4 resultados para Mesoporous silica

em Université Laval Mémoires et thèses électroniques


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les matériaux mésoporeux à base de silice sont des plateformes polyvalentes qui offrent une réponse aux besoins de domaines variés comme l’environnement, la santé et les énergies. La fonctionnalisation avec des groupements organiques en fait des matériaux hybrides qu’il est aisé d’orienter vers une application spécifique. Ainsi, afin de fournir une alternative aux procédés industriels, dommageables pour l’environnement actuellement utilisés pour l’extraction et la purification des terres rares, à savoir l’extraction liquide-liquide (ELL) majoritairement, les silices mésoporeuses ont été sollicitées à titre d’adsorbant dans l’extraction sur phase solide. Cette dernière, en opposition à l’ELL, présente de nombreux avantages dont, la suppression des solvants organiques, le contrôle de la sélectivité envers et parmi le groupe des éléments de terres rares (ÉTR) à travers l’ancrage du ligand sur un support solide et la possibilité de réutiliser plusieurs fois l’adsorbant. Les ÉTR sont des métaux qui participent à la transition vers des technologies moins coûteuses en énergie, il est donc primordial de rendre leurs procédés d’extraction plus verts. Dans le cadre de ce travail, différents types de silices ordonnées mésoporeuses, MCM-41, SBA-15 et SBA-16, ont été synthétisées, fonctionnalisées avec un ligand approprié, et leurs comportements vis à vis de ces éléments, comparés. Ces matériaux ont de nombreux points communs mais certaines caractéristiques les différencient néanmoins : la taille et la géométrie des pores, la connexion entre les pores, l’épaisseur des parois, l’accessibilité aux pores ou encore la diffusion des liquides ou gaz dans la matrice. C’est pourquoi, le but de cette étude est d’élucider l’impact de ces diverses propriétés sur l’adsorption sélective des ÉTR en condition statique et dynamique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les biofilms bactériens sont composés d’organismes unicellulaires vivants au sein d’une matrice protectrice, formée de macromolécules naturelles. Des biofilms non désirés peuvent avoir un certain nombre de conséquences néfastes, par exemple la diminution du transfert de chaleur dans les échangeurs de chaleurs, l’obstruction de membranes poreuses, la contamination des surfaces coques de navires, etc. Par ailleurs, les bactéries pathogènes qui prolifèrent dans un biofilm posent également un danger pour la santé s’ils croissent sur des surfaces médicales synthétiques comme des implants biomédicaux, cathéters ou des lentilles de vue. De plus, la croissance sur le tissu naturel par certaines souches des bactéries peut être fatale, comme Pseudomonas aeruginosa dans les poumons. Cependant, la présence de biofilms reste difficile à traiter, car les bactéries sont protégées par une matrice extracellulaire. Pour tenter de remédier à ces problèmes, nous proposons de développer une surface antisalissure (antifouling) qui libère sur demande des agents antimicrobiens. La proximité et la disposition du système de relargage placé sous le biofilm, assureront une utilisation plus efficace des molécules antimicrobiennes et minimiseront les effets secondaires de ces dernières. Pour ce faire, nous envisageons l’utilisation d’une couche de particules de silice mésoporeuses comme agents de livraison d’agents antimicrobiens. Les nanoparticules de silice mésoporeuses (MSNs) ont démontré un fort potentiel pour la livraison ciblée d’agents thérapeutiques et bioactifs. Leur utilisation en nano médecine découle de leurs propriétés de porosité intéressantes, de la taille et de la forme ajustable de ces particules, de la chimie de leur surface et leur biocompatibilité. Ces propriétés offrent une flexibilité pour diverses applications. De plus, il est possible de les charger avec différentes molécules ou biomolécules (de tailles variées, allant de l’ibuprofène à l’ARN) et d’exercer un contrôle précis des paramètres d’adsorption et des cinétiques de relargage (désorption). Mots Clés : biofilms, nanoparticules de silice mésoporeuses, microfluidique, surface antisalissure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les zéolithes étant des matériaux cristallins microporeux ont démontré leurs potentiels et leur polyvalence dans un nombre très important d’applications. Les propriétés uniques des zéolithes ont poussé les chercheurs à leur trouver constamment de nouvelles utilités pour tirer le meilleur parti de ces matériaux extraordinaires. Modifier les caractéristiques des zéolithes classiques ou les combiner en synergie avec d’autres matériaux se trouvent être deux approches viables pour trouver encore de nouvelles applications. Dans ce travail de doctorat, ces deux approches ont été utilisées séparément, premièrement avec la modification morphologique de la ZSM-12 et deuxièmement lors de la formation des matériaux de type coeur/coquille (silice mésoporeuses@silicalite-1). La ZSM-12 est une zéolithe à haute teneur en silice qui a récemment attiré beaucoup l’attention par ses performances supérieures dans les domaines de l’adsorption et de la catalyse. Afin de synthétiser la ZSM-12 avec une pureté élevée et une morphologie contrôlée, la cristallisation de la zéolithe ZSM-12 a été étudiée en détail en fonction des différents réactifs chimiques disponibles (agent directeur de structure, types de silicium et source d’aluminium) et des paramètres réactionnels (l’alcalinité, ratio entre Na, Al et eau). Les résultats présentés dans cette étude ont montré que, contrairement à l’utilisation du structurant organique TEAOH, en utilisant un autre structurant, le MTEAOH, ainsi que le Al(o-i-Pr)3, cela a permis la formation de monocristaux ZSM-12 monodisperses dans un temps plus court. L’alcalinité et la teneur en Na jouent également des rôles déterminants lors de ces synthèses. Les structures de types coeur/coquille avec une zéolithe polycristalline silicalite-1 en tant que coquille, entourant un coeur formé par une microsphère de silice mésoporeuse (tailles de particules de 1,5, 3 et 20-45 μm) ont été synthétisés soit sous forme pure ou chargée avec des espèces hôtes métalliques. Des techniques de nucléations de la zéolithe sur le noyau ont été utilisées pour faire croitre la coquille de façon fiable et arriver à former ces matériaux. C’est la qualité des produits finaux en termes de connectivité des réseaux poreux et d’intégrité de la coquille, qui permet d’obtenir une stéréosélectivité. Ceci a été étudié en faisant varier les paramètres de synthèse, par exemple, lors de prétraitements qui comprennent ; la modification de surface, la nucléation, la calcination et le nombre d’étapes secondaires de cristallisation hydrothermale. En fonction de la taille du noyau mésoporeux et des espèces hôtes incorporées, l’efficacité de la nucléation se révèle être influencée par la technique de modification de surface choisie. En effet, les microsphères de silice mésoporeuses contenant des espèces métalliques nécessitent un traitement supplémentaire de fonctionnalisation chimique sur leur surface externe avec des précurseurs tels que le (3-aminopropyl) triéthoxysilane (APTES), plutôt que d’utiliser une modification de surface avec des polymères ioniques. Nous avons également montré que, selon la taille du noyau, de deux à quatre traitements hydrothermaux rapides sont nécessaires pour envelopper totalement le noyau sans aucune agrégation et sans dissoudre le noyau. De tels matériaux avec une enveloppe de tamis moléculaire cristallin peuvent être utilisés dans une grande variété d’applications, en particulier pour de l’adsorption et de la catalyse stéréo-sélective. Ce type de matériaux a été étudié lors d’une série d’expériences sur l’adsorption sélective du glycérol provenant de biodiesel brut avec des compositions différentes et à des températures différentes. Les résultats obtenus ont été comparés à ceux utilisant des adsorbants classiques comme par exemple du gel de sphères de silice mésoporeux, des zéolithes classiques, silicalite-1, Si-BEA et ZSM-5(H+), sous forment de cristaux, ainsi que le mélange physique de ces matériaux références, à savoir un mélange silicalite-1 et le gel de silice sphères. Bien que le gel de sphères de silice mésoporeux ait montré une capacité d’adsorption de glycérol un peu plus élevée, l’étude a révélé que les adsorbants mésoporeux ont tendance à piéger une quantité importante de molécules plus volumineuses, telles que les « fatty acid methyl ester » (FAME), dans leur vaste réseau de pores. Cependant, dans l’adsorbant à porosité hiérarchisée, la fine couche de zéolite silicalite-1 microporeuse joue un rôle de membrane empêchant la diffusion des molécules de FAME dans les mésopores composant le noyau/coeur de l’adsorbant composite, tandis que le volume des mésopores du noyau permet l’adsorption du glycérol sous forme de multicouches. Finalement, cette caractéristique du matériau coeur/coquille a sensiblement amélioré les performances en termes de rendement de purification et de capacité d’adsorption, par rapport à d’autres adsorbants classiques, y compris le gel de silice mésoporeuse et les zéolithes.