3 resultados para GROUND WATER
em Université Laval Mémoires et thèses électroniques
Resumo:
Le lessivage des nitrates, la contamination de la nappe phréatique et l’eutrophisation des cours d’eau figurent parmi les enjeux planétaires qui affectent la durabilité de l’agriculture et des ressources naturelles. Ce mémoire présente le développement d’une première génération d’un nouveau senseur électrochimique pour le dosage de précisions des nitrates. Celui-ci est basé sur la spectroscopie d’impédance électrochimique d’une membrane polymérique sélective aux ions. Grâce à cette approche, un senseur compact et abordable a été produit. Par son utilisation en solutions aqueuses et en substrats de croissance saturés, il a été montré que le senseur permettait de quantifier des ajouts contrôlés de nitrates allant de 0,6 ppm à 60 ppm. La mise en application en substrat de croissance a pu être étudiée en comparaison avec des méthodes certifiées ISO 17025 visant l’analyse de ces substrats. Le senseur a aussi montré une grande versatilité par son utilisation sur divers appareils de mesure d’impédance. En plus, il a démontré une stabilité possible suite à une implantation d’un mois directement en substrat de croissance sous les variables environnementales d’une pépinière forestière. Par l’étude du spectre d’impédance du senseur en solutions pures de différentes concentrations, il a aussi été possible de proposer le circuit électrique équivalent du système, qui met en évidence deux parcours compétitifs du courant, un au coeur de la membrane et un deuxième en solution. Les résultats de ces travaux sont au coeur de deux publications scientifiques dont le manuscrit est inclus à ce mémoire. Pour finir cette étude, des suggestions seront faites pour guider l’amélioration du senseur par le développement d’une deuxième génération de celui-ci.
Resumo:
La gestion intégrée de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociétés de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu à l’autre. Il est possible de simplifier cette question en s’attardant plutôt aux deux destinations de l’eau. L’eau bleue forme les réserves et les flux dans l’hydrosystème : cours d’eau, nappes et écoulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphère. Elle inclut l’eau consommée par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intéressant généralement qu’au devenir des débits ou, plus rarement, à la recharge des nappes. Le portrait global est alors manquant. Dans un même temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de manière distincte les différents composants de cycle hydrologique. L’étude réalisée ici utilise l’outil de modélisation SWAT afin de réaliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystème du bassin versant de la Garonne. Une première partie du travail a permis d’affiner la mise en place du modèle pour répondre au mieux à la problématique posée. Un soin particulier a été apporté à l’utilisation de données météorologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramètres du modèle a été testé dans un contexte differential split sampling, en calant puis validant sur des années contrastées en terme climatique afin d’appréhender la robustesse de la simulation dans un contexte de changements climatiques. Cette étape a permis une amélioration substantielle des performances sur la période de calage (2000-2010) ainsi que la mise en évidence de la stabilité du modèle face aux changements climatiques. Par suite, des simulations sur une période d’un siècle (1960-2050) ont été produites puis analysées en deux phases : i) La période passée (1960-2000), basée sur les observations climatiques, a servi de période de validation à long terme du modèle sur la simulation des débits, avec de très bonnes performances. L’analyse des différents composants hydrologiques met en évidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbées au niveau du stock de neige et des débits qui présentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont été réalisées (2010-2050) en sélectionnant une gamme de scénarios et de modèles climatiques issus d’une mise à l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirées de la période passée : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la période estivale est telle qu’elle en vient à réduire les flux d’évapotranspiration réelle, mettant en évidence le possible déficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les débits semblent cette fois en hausse pendant l’automne et l’hiver. Ces résultats sont un signe de l’«accélération» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des évènements extrêmes de précipitation. Ce travail a permis de réaliser une analyse des variations de la plupart des composantes du cycle hydrologique à l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour évaluer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau.
Resumo:
Au Québec, les drains installés dans les sols sableux-limoneux sont sensibles au colmatage par ensablement et/ou par ocre de fer. Dans le passé, les drains avec des pertuis inférieurs à 2 mm étaient utilisés au Québec avec un filtre tissé de 110 microns ou un filtre tricoté de 450 microns. Récemment, des drains avec des pertuis supérieurs à 2 mm ainsi qu’un filtre de 250 microns ont été introduits sur le marché mais n’ont jamais été testés. Le projet avait pour objectif de déterminer les vitesses auxquelles se feront l’ensablement et le colmatage ferrique pour différentes combinaisons de drains (pertuis de 1,8 mm et de 3 mm) et de filtres (110 μm, 250 μm et 450 μm) dans un sol sableux à Bécancour. Un dispositif expérimental en blocs complets (3) aléatoires a été utilisé. Les débits ont été mesurés à la sortie des drains de chaque parcelle et les hauteurs des nappes ont été mesurées avec un bulleur dans des puits d’observation. Le suivi du pH, du potentiel d’oxydoréduction et du contenu en Fe2+ a été réalisé dans l’eau de la nappe et celle des drains. Les drains excavés 13 mois après leur installation ne montrent que des traces de sédiments et de colmatage ferrique. Les niveaux de Fe2+ sont significativement plus faibles dans l’eau à la sortie des drains que dans l’eau de la nappe. Le processus de colmatage ferrique ne semble que commencer et son impact n’est pas mesurable au niveau des débits unitaires à la sortie des drains.