3 resultados para ELBOW FLEXION
em Université Laval Mémoires et thèses électroniques
Resumo:
Avec le vieillissement des infrastructures routières au Québec, plusieurs ponts de courte portée devront être reconstruits à neuf au cours des prochaines années. La pratique usuelle est de les concevoir entièrement en béton ou en systèmes mixtes acier-béton. Toutefois, avec l’avancement de la recherche dans le domaine du bois, le système hybride bois-béton est envisageable. Le but est de tirer profit des avantages de chaque matériau en les disposant aux endroits appropriés. Le tablier du pont est constitué d’une dalle de béton qui agit en compression et protège des intempéries les poutres en bois lamellé-collé qui résistent en traction. L’enjeu est la capacité de lier efficacement ces deux matériaux pour qu’ils puissent reprendre les efforts dus aux charges de conception avec un glissement d’interface minimal. De nombreux chercheurs ont proposé diverses méthodes pour répondre à cette problématique. Les connecteurs locaux (vis, clous) sont moins rigides et se déforment beaucoup à l’ultime. À l’inverse, les connecteurs continus offrent une rigidité très élevée, de petits déplacements à rupture sans négliger la plasticité du système. Pour cette raison, le connecteur choisi est le HBV Shear, une mince bande d’acier de 90mm de hauteur perforée de trous de 10mm. Sa moitié inférieure est collée dans une fente pratiquée dans la poutre et la partie supérieure est immergée dans le béton. Pour caractériser le comportement du connecteur, dix essais en cisaillement simple ont été effectués. Ils ont permis de quantifier la rigidité et d’apprécier la ductilité qui s’installe dans le système par l’ajout de l’acier. Par la suite, six poutres hybrides simple de 4 m, deux systèmes à poutres double de 4m et deux poutres hybrides de 12m de portée ont été amenées à la rupture en flexion. Ces essais ont montré que le connecteur se brisait sous l’effort de manière ductile avant la rupture fragile de la poutre en bois. Les résultats ont aussi prouvé que les méthodes de calculs utilisées estiment correctement la séquence de rupture ainsi que le comportement du système avec une très grande efficacité. Finalement, un tablier de pont composite a été conçu pour résister aux efforts à l’ultime, en service et à long terme.
Resumo:
Cette thèse s’inscrit dans le contexte d’une optimisation industrielle et économique des éléments de structure en BFUP permettant d’en garantir la ductilité au niveau structural, tout en ajustant la quantité de fibres et en optimisant le mode de fabrication. Le modèle développé décrit explicitement la participation du renfort fibré en traction au niveau local, en enchaînant une phase de comportement écrouissante suivie d’une phase adoucissante. La loi de comportement est fonction de la densité, de l’orientation des fibres vis-à-vis des directions principales de traction, de leur élancement et d’autres paramètres matériaux usuels liés aux fibres, à la matrice cimentaire et à leur interaction. L’orientation des fibres est prise en compte à partir d’une loi de probabilité normale à une ou deux variables permettant de reproduire n’importe quelle orientation obtenue à partir d’un calcul représentatif de la mise en oeuvre du BFUP frais ou renseignée par analyse expérimentale sur prototype. Enfin, le modèle reproduit la fissuration des BFUP sur le principe des modèles de fissures diffuses et tournantes. La loi de comportement est intégrée au sein d’un logiciel de calcul de structure par éléments finis, permettant de l’utiliser comme un outil prédictif de la fiabilité et de la ductilité globale d’éléments en BFUP. Deux campagnes expérimentales ont été effectuées, une à l’Université Laval de Québec et l’autre à l’Ifsttar, Marne-la-Vallée. La première permet de valider la capacité du modèle reproduire le comportement global sous des sollicitations typiques de traction et de flexion dans des éléments structurels simples pour lesquels l’orientation préférentielle des fibres a été renseignée par tomographie. La seconde campagne expérimentale démontre les capacités du modèle dans une démarche d’optimisation, pour la fabrication de plaques nervurées relativement complexes et présentant un intérêt industriel potentiel pour lesquels différentes modalités de fabrication et des BFUP plus ou moins fibrés ont été envisagés. Le contrôle de la répartition et de l’orientation des fibres a été réalisé à partir d’essais mécaniques sur prélèvements. Les prévisions du modèle ont été confrontées au comportement structurel global et à la ductilité mis en évidence expérimentalement. Le modèle a ainsi pu être qualifié vis-à-vis des méthodes analytiques usuelles de l’ingénierie, en prenant en compte la variabilité statistique. Des pistes d’amélioration et de complément de développement ont été identifiées.
Resumo:
Cette étude est destinée à la production et à la caractérisation des composites d’acide polylactique (PLA) et des fibres naturelles (lin, poudre de bois). Le moussage du PLA et ses composites ont également été étudiés afin d’évaluer les effets des conditions de moulage par injection et du renfort sur les propriétés finales de ces matériaux. Dans la première partie, les composites constitués de PLA et des fibres de lin ont été produits par extrusion suivit par un moulage en injection. L’effet de la variation du taux de charge (15, 25 et 40% en poids) sur les caractéristiques morphologique, mécanique, thermique et rhéologique des composites a été évalué. Dans la deuxième étape, la poudre de bois (WF) a été choisie pour renforcer le PLA. La préparation des composites de PLA et WF a été effectuée comme dans la première partie et une série complète de caractérisations morphologique, mécanique, thermique et l’analyse mécanique dynamique ont été effectués afin d’obtenir une évaluation complète de l’effet du taux de charge (15, 25 et 40% en poids) sur les propriétés du PLA. Finalement, la troisième partie de cette étude porte sur les composites de PLA et de renfort naturel afin de produire des composites moussés. Ces mousses ont été réalisées à l’aide d’un agent moussant exothermique (azodicarbonamide) via le moulage par injection, suite à un mélange du PLA et de fibres naturelles. Dans ce cas, la charge d’injection (quantité de matière injectée dans le moule: 31, 33, 36, 38 et 43% de la capacité de la presse à injection) et la concentration en poudre de bois (15, 25 et 40% en poids) ont été variées. La caractérisation des propriétés mécanique et thermique a été effectuée et les résultats ont démontré que les renforts naturels étudiés (lin et poudre de bois) permettaient d’améliorer les propriétés mécaniques des composites, notamment le module de flexion et la résistance au choc du polymère (PLA). En outre, la formation de la mousse était également efficace pour le PLA vierge et ses composites car les masses volumiques ont été significativement réduites.