2 resultados para Connecteurs (Construction)
em Université Laval Mémoires et thèses électroniques
Resumo:
Le bois subit une demande croissante comme matériau de construction dans les bâtiments de grandes dimensions. Ses qualités de matériau renouvelable et esthétique le rendent attrayant pour les architectes. Lorsque comparé à des produits fonctionnellement équivalents, il apparait que le bois permet de réduire la consommation d’énergie non-renouvelable. Sa transformation nécessite une quantité d’énergie inférieure que l’acier et le béton. Par ailleurs, par son origine biologique, une structure en bois permet de stocker du carbone biogénique pour la durée de vie du bâtiment. Maintenant permis jusqu’à six étages de hauteur au Canada, les bâtiments de grande taille en bois relèvent des défis de conception. Lors du dimensionnement des structures, les zones des connecteurs sont souvent les points critiques. Effectivement, les contraintes y sont maximales. Les structures peuvent alors apparaitre massives et diminuer l’innovation architecturale. De nouvelles stratégies doivent donc être développées afin d’améliorer la résistance mécanique dans les zones de connecteurs. Différents travaux ont récemment porté sur la création ou l’amélioration de types d’assemblage. Dans cette étude, l’accent est mis sur le renforcement du bois utilisé dans la région de connexion. L’imprégnation a été choisie comme solution de renfort puisque la littérature démontre qu’il est possible d’augmenter la dureté du bois avec cette technique. L’utilisation de cette stratégie de renfort sur l’épinette noire (Picea Mariana (Mill.) BSP) pour une application structurale est l’élément de nouveauté dans cette recherche. À défaut d’effectuer une imprégnation jusqu’au coeur des pièces, l’essence peu perméable de bois employée favorise la création d’une mince couche en surface traitée sans avoir à utiliser une quantité importante de produits chimiques. L’agent d’imprégnation est composé de 1,6 hexanediol diacrylate, de triméthylopropane tricacrylate et d’un oligomère de polyester acrylate. Une deuxième formulation contenant des nanoparticules de SiO2 a permis de vérifier l’effet des nanoparticules sur l’augmentation de la résistance mécanique du bois. Ainsi, dans ce projet, un procédé d’imprégnation vide-pression a servi à modifier un nouveau matériau à base de bois permettant des assemblages plus résistants mécaniquement. Le test de portance locale à l’enfoncement parallèle au fil d’un connecteur de type tige a été réalisé afin de déterminer l’apport du traitement sur le bois utilisé comme élément de connexion. L’effet d’échelle a été observé par la réalisation du test avec trois diamètres de boulons différents (9,525 mm, 12,700 mm et 15,875 mm). En outre, le test a été effectué selon un chargement perpendiculaire au fil pour le boulon de moyen diamètre (12,700 mm). La corrélation d’images numériques a été utilisée comme outil d’analyse de la répartition des contraintes dans le bois. Les résultats ont démontré une portance du bois plus élevée suite au traitement. Par ailleurs, l’efficacité est croissante lorsque le diamètre du boulon diminue. C’est un produit avec une valeur caractéristique de la portance locale parallèle au fil de 79% supérieure qui a été créé dans le cas du test avec le boulon de 9,525 mm. La raideur du bois a subi une augmentation avoisinant les 30%. Suite au traitement, la présence d’une rupture par fissuration est moins fréquente. Les contraintes se distribuent plus largement autour de la région de connexion. Le traitement n’a pas produit d’effet significatif sur la résistance mécanique de l’assemblage dans le cas d’un enfoncement du boulon perpendiculairement au fil du bois. De même, l’effet des nanoparticules en solution n’est pas ressorti significatif. Malgré une pénétration très faible du liquide à l’intérieur du bois, la couche densifiée en surface créée suite au traitement est suffisante pour produire un nouveau matériau plus résistant dans les zones de connexion. Le renfort du bois dans la région des connecteurs doit influencer le dimensionnement des structures de grande taille. Avec des éléments de connexion renforcés, il sera possible d’allonger les portées des poutres, multipliant ainsi les possibilités architecturales. Le renfort pourra aussi permettre de réduire les sections des poutres et d’utiliser une quantité moindre de bois dans un bâtiment. Cela engendrera des coûts de transport et des coûts reliés au temps d’assemblage réduits. De plus, un connecteur plus résistant permettra d’être utilisé en moins grande quantité dans un assemblage. Les coûts d’approvisionnement en éléments métalliques et le temps de pose sur le site pourront être revus à la baisse. Les avantages d’un nouveau matériau à base de bois plus performant utilisé dans les connexions permettront de promouvoir le bois dans les constructions de grande taille et de réduire l’impact environnemental des bâtiments.
Resumo:
Les charpentes en bois doivent inévitablement inclure des assemblages pouvant transférer les charges entre les éléments de façon adéquate pour assurer l’intégrité de la structure. Les assemblages sont une partie critique des structures en bois puisque dans la plupart des cas, ce sont ceux-ci qui permettent de dissiper l’énergie et d’obtenir un mode de rupture ductile sous les charges sismiques. Ce mode de rupture est préférable, puisqu’il donne lieu à une grande déformation avant effondrement, permettant ainsi une évacuation des occupants en toute sécurité lors de tremblement de terre. Les assemblages à petits diamètres tels que les clous, les rivets et les vis sont fréquemment utilisés dans les constructions en bois et on suppose qu’ils amènent une rupture ductile bien qu’il soit impossible pour les concepteurs de prédire exactement le mode de rupture à l’aide de la méthode de calcul actuelle. De plus, les rivets ont une application très limitée dû au fait que la méthode de calcul utilisée actuellement s’applique à des configurations, essences et types de produits de bois très spécifiques. L’objectif de ce projet est d’évaluer une nouvelle méthode de calcul proposée par des chercheurs de Nouvelle-Zélande, Zarnani et Quenneville, pour les assemblages à rivets, mais adaptable pour les assemblages de bois à attaches de petits diamètres. Elle permet au concepteur de déterminer avec précision le mode de rupture des assemblages de différentes configurations avec différents produits de bois. Plus de 70 essais sur les assemblages à rivets et à clous résistants à des charges variant de 40kN à 800kN ont été effectués dans le cadre de ce projet de recherche afin de valider l’utilisation de cette méthode avec le produit du bois lamellé-collé canadien Nordic Lam et la comparer avec celle présentement utilisée au Canada. Les modes de rupture ductile, fragile et mixte ont été prévus avec l’emphase sur le mode fragile puisque c’est celui-ci qui est le plus variable et le moins étudié. Les assemblages en bois lamellé-collé Nordic Lam étaient cloués ou rivetés selon différentes configurations variant de 18 à 128 clous ou rivets. Les résultats démontrent une bonne prédiction de la résistance et des modes de rupture des assemblages à clous et à rivets. Pour quelques configurations des assemblages à rivets, les prédictions de la nouvelle méthode sont plus élevées qu’avec la méthode actuelle. Les assemblages à clous ont démontré des ruptures de la tige de clous au niveau du plan de cisaillement lors de tous les essais effectués, ce qui ne correspond pas à un mode ductile ou fragile prévue par la méthode de calcul.