2 resultados para Compressed workweek
em Université Laval Mémoires et thèses électroniques
Resumo:
La compression des données est la technique informatique qui vise à réduire la taille de l’information pour minimiser l’espace de stockage nécessaire et accélérer la transmission des données dans les réseaux à bande passante limitée. Plusieurs techniques de compression telles que LZ77 et ses variantes souffrent d’un problème que nous appelons la redondance causée par la multiplicité d’encodages. La multiplicité d’encodages (ME) signifie que les données sources peuvent être encodées de différentes manières. Dans son cas le plus simple, ME se produit lorsqu’une technique de compression a la possibilité, au cours du processus d’encodage, de coder un symbole de différentes manières. La technique de compression par recyclage de bits a été introduite par D. Dubé et V. Beaudoin pour minimiser la redondance causée par ME. Des variantes de recyclage de bits ont été appliquées à LZ77 et les résultats expérimentaux obtenus conduisent à une meilleure compression (une réduction d’environ 9% de la taille des fichiers qui ont été compressés par Gzip en exploitant ME). Dubé et Beaudoin ont souligné que leur technique pourrait ne pas minimiser parfaitement la redondance causée par ME, car elle est construite sur la base du codage de Huffman qui n’a pas la capacité de traiter des mots de code (codewords) de longueurs fractionnaires, c’est-à-dire qu’elle permet de générer des mots de code de longueurs intégrales. En outre, le recyclage de bits s’appuie sur le codage de Huffman (HuBR) qui impose des contraintes supplémentaires pour éviter certaines situations qui diminuent sa performance. Contrairement aux codes de Huffman, le codage arithmétique (AC) peut manipuler des mots de code de longueurs fractionnaires. De plus, durant ces dernières décennies, les codes arithmétiques ont attiré plusieurs chercheurs vu qu’ils sont plus puissants et plus souples que les codes de Huffman. Par conséquent, ce travail vise à adapter le recyclage des bits pour les codes arithmétiques afin d’améliorer l’efficacité du codage et sa flexibilité. Nous avons abordé ce problème à travers nos quatre contributions (publiées). Ces contributions sont présentées dans cette thèse et peuvent être résumées comme suit. Premièrement, nous proposons une nouvelle technique utilisée pour adapter le recyclage de bits qui s’appuie sur les codes de Huffman (HuBR) au codage arithmétique. Cette technique est nommée recyclage de bits basé sur les codes arithmétiques (ACBR). Elle décrit le cadriciel et les principes de l’adaptation du HuBR à l’ACBR. Nous présentons aussi l’analyse théorique nécessaire pour estimer la redondance qui peut être réduite à l’aide de HuBR et ACBR pour les applications qui souffrent de ME. Cette analyse démontre que ACBR réalise un recyclage parfait dans tous les cas, tandis que HuBR ne réalise de telles performances que dans des cas très spécifiques. Deuxièmement, le problème de la technique ACBR précitée, c’est qu’elle requiert des calculs à précision arbitraire. Cela nécessite des ressources illimitées (ou infinies). Afin de bénéficier de cette dernière, nous proposons une nouvelle version à précision finie. Ladite technique devienne ainsi efficace et applicable sur les ordinateurs avec les registres classiques de taille fixe et peut être facilement interfacée avec les applications qui souffrent de ME. Troisièmement, nous proposons l’utilisation de HuBR et ACBR comme un moyen pour réduire la redondance afin d’obtenir un code binaire variable à fixe. Nous avons prouvé théoriquement et expérimentalement que les deux techniques permettent d’obtenir une amélioration significative (moins de redondance). À cet égard, ACBR surpasse HuBR et fournit une classe plus étendue des sources binaires qui pouvant bénéficier d’un dictionnaire pluriellement analysable. En outre, nous montrons qu’ACBR est plus souple que HuBR dans la pratique. Quatrièmement, nous utilisons HuBR pour réduire la redondance des codes équilibrés générés par l’algorithme de Knuth. Afin de comparer les performances de HuBR et ACBR, les résultats théoriques correspondants de HuBR et d’ACBR sont présentés. Les résultats montrent que les deux techniques réalisent presque la même réduction de redondance sur les codes équilibrés générés par l’algorithme de Knuth.
Resumo:
Au cours des dernières décennies, l’effort sur les applications de capteurs infrarouges a largement progressé dans le monde. Mais, une certaine difficulté demeure, en ce qui concerne le fait que les objets ne sont pas assez clairs ou ne peuvent pas toujours être distingués facilement dans l’image obtenue pour la scène observée. L’amélioration de l’image infrarouge a joué un rôle important dans le développement de technologies de la vision infrarouge de l’ordinateur, le traitement de l’image et les essais non destructifs, etc. Cette thèse traite de la question des techniques d’amélioration de l’image infrarouge en deux aspects, y compris le traitement d’une seule image infrarouge dans le domaine hybride espacefréquence, et la fusion d’images infrarouges et visibles employant la technique du nonsubsampled Contourlet transformer (NSCT). La fusion d’images peut être considérée comme étant la poursuite de l’exploration du modèle d’amélioration de l’image unique infrarouge, alors qu’il combine les images infrarouges et visibles en une seule image pour représenter et améliorer toutes les informations utiles et les caractéristiques des images sources, car une seule image ne pouvait contenir tous les renseignements pertinents ou disponibles en raison de restrictions découlant de tout capteur unique de l’imagerie. Nous examinons et faisons une enquête concernant le développement de techniques d’amélioration d’images infrarouges, et ensuite nous nous consacrons à l’amélioration de l’image unique infrarouge, et nous proposons un schéma d’amélioration de domaine hybride avec une méthode d’évaluation floue de seuil amélioré, qui permet d’obtenir une qualité d’image supérieure et améliore la perception visuelle humaine. Les techniques de fusion d’images infrarouges et visibles sont établies à l’aide de la mise en oeuvre d’une mise en registre précise des images sources acquises par différents capteurs. L’algorithme SURF-RANSAC est appliqué pour la mise en registre tout au long des travaux de recherche, ce qui conduit à des images mises en registre de façon très précise et des bénéfices accrus pour le traitement de fusion. Pour les questions de fusion d’images infrarouges et visibles, une série d’approches avancées et efficaces sont proposés. Une méthode standard de fusion à base de NSCT multi-canal est présente comme référence pour les approches de fusion proposées suivantes. Une approche conjointe de fusion, impliquant l’Adaptive-Gaussian NSCT et la transformée en ondelettes (Wavelet Transform, WT) est propose, ce qui conduit à des résultats de fusion qui sont meilleurs que ceux obtenus avec les méthodes non-adaptatives générales. Une approche de fusion basée sur le NSCT employant la détection comprime (CS, compressed sensing) et de la variation totale (TV) à des coefficients d’échantillons clairsemés et effectuant la reconstruction de coefficients fusionnés de façon précise est proposée, qui obtient de bien meilleurs résultats de fusion par le biais d’une pré-amélioration de l’image infrarouge et en diminuant les informations redondantes des coefficients de fusion. Une procédure de fusion basée sur le NSCT utilisant une technique de détection rapide de rétrécissement itératif comprimé (fast iterative-shrinking compressed sensing, FISCS) est proposée pour compresser les coefficients décomposés et reconstruire les coefficients fusionnés dans le processus de fusion, qui conduit à de meilleurs résultats plus rapidement et d’une manière efficace.