4 resultados para Catalyseur de palladium
em Université Laval Mémoires et thèses électroniques
Resumo:
Environ 90% des composés produits industriellement sont fabriqués à l’aide de catalyseurs. C’est pourquoi la conception de catalyseurs toujours plus performants pour améliorer les procédés industriels actuels est toujours d’intérêt. De la grande variété de complexes avec des métaux de transition rapportés jusqu’à présent, les complexes zwitterioniques attirent notre attention par leurs activités catalytiques souvent supérieures aux complexes cationiques normaux. Un complexe métallique zwitterionique est un fragment métal-ligand neutre où la charge positive est située sur le centre métallique et où la charge négative est délocalisée sur un des ligands liés au métal. Nous proposons la synthèse de ligands anioniques phosphine comportant des groupements borates et boratabenzènes. Cette dernière espèce est un cycle à 6 membres où l’un des atomes de carbone est remplacé par un atome de bore et qui est négativement chargé. La capacité de ces phosphines anioniques à se lier à un centre métallique à l’aide de la paire libre du phosphore est due à la nature du lien P-B qui défavorise l’interaction entre la paire libre du phosphore et l’orbitale p vide du bore. Les propriétés de di-tert-butylphosphido-boratabenzène (DTBB) comme ligand phosphine anionique hautement donneur et encombré ainsi que la découverte de ses modes de coordination inhabituels pour stabiliser les métaux de transition insaturés ont été étudiés au cours de ce travail. De nouvelles perspectives sur les modes de coordination de phosphido-boratabenzène et la force de l’interaction du lien P-B seront discutées ainsi que les applications catalytiques. Nous avons d’abord étudié la coordination η1 avec des complexes de fer, ce qui nous a fourni des données quantitatives précieuses sur la capacité du DTBB d’agir comme ligand très donneur par rapport aux autres ligands donneurs bien connus. La capacité du DTBB à changer de mode de coordination pour soutenir les besoins électroniques du métal a été démontrée par la découverte d’une nouvelle espèce ferrocenyl phosphido-boratabenzène et sa nucléophilie a été étudiée. Au meilleur de notre connaissance, aucun exemple d’un ligand boratabenzène coordonné aux métaux du groupe 11 n’existe dans la littérature. Voilà pourquoi nous avons décidé d’explorer les modes de coordination du ligand DTBB avec Cu(I), Ag(I) et Au(I). A notre grande surprise, le ligand DTBB est capable de stabiliser les métaux du groupe 11 aux états d’oxydation faibles par une liaison MP qui est une coordination du type η1, un mode de coordination guère observé pour les ligands boratabenzène. Pendant nos travaux, notre attention s’est tournée vers la synthèse d’un complexe de rhodium(I) afin de tester son utilité en catalyse. A notre grande satisfaction, le complexe Rh-DTBB agit comme un précatalyseur pour l’hydrogénation des alcènes et alcynes à la température ambiante et à pression atmosphérique et son activité est comparable à celle du catalyseur de Wilkinson. Dans un désir d’élargir les applications de notre recherche, notre attention se tourna vers l’utilisation des composés du bore autres que le boratabenzène. Nous avons décidé de synthétiser une nouvelle espèce phosphido-borate encombrée. Lorsqu’elle réagit avec des métaux, l’espèce phosphido-borate subit un clivage de la liaison P-B. Toutefois, cette observation met en évidence la singularité et les avantages de la stabilité de la liaison P-B lors de l’utilisation du fragment boratabenzène. Ces observations enrichissent notre compréhension des conditions dans lesquelles la liaison P-B du ligand DTBB peut être clivée. Ces travaux ont mené à la découverte d’un nouveau ligand ansa-boratabenzène avec une chimie de coordination prometteuse.
Resumo:
La photocatalyse est un procédé d’oxydation avancé très intéressant puisqu’il ne nécessite l’ajout d’aucun réactif chimique. Beaucoup de compagnies souhaitent utiliser ce procédé pour le traitement des gaz et des eaux. Les services Exp inc. est une compagnie qui s’intéresse à la dégradation des composés organiques volatils en milieu aqueux. Ils ont comme objectif d’améliorer leurs technologies et d’en développer de nouvelles comme la photocatalyse. L’objectif ce de projet de maîtrise est de développer un matériau capable d‘oxyder le méthanol en phase aqueuse. Le développement d’un tel photocatalyseur permet d’évaluer systématiquement l’impact de toutes les modifications apportées à un matériau de base et d’en comprendre les bénéfices. Le matériau préparé est basé sur des nanotiges de WO3 synthétisées par voie hydrothermale où l’on ajoute des nanoparticules de TiO2 pour former un composé mixte. Un co-catalyseur de réduction, le platine, est ajouté par photodéposition sur le composé TiO2/WO3. Le produit est finalement traité à l’hydrogène pour en augmenter l’activité catalytique. Pour tester les matériaux, un réacteur photocatalytique a été conçu. Le réacteur possède deux configurations, soit une avec une lampe ultraviolette plongée dans l’eau et une avec une bande de diodes électroluminescentes bleues autour du réacteur. Les modifications, telles que le traitement sous hydrogène et l’ajout de platine, augmentent considérablement l’activité des photocatalyseurs. Les nanotiges de WO3 possèdent une faible surface spécifique offrant donc une activité inférieure à un autre composé avec plus de surface. L’activité des photocatalyseurs est plus faible que celles desprocédés utilisant du peroxyde. Cependant, plusieurs avantages sont remarqués. La photocatalyse se fait à pH neutre et il est possible d’utiliser de la lumière visible. Un matériau photocatalytique basé sur des nanoparticules de WO3 à haute surface spécifique avec du TiO2, du platine et traité à l’hydrogène pourrait offrir une avenue intéressante pour Exp inc.
Resumo:
Ce travail de thèse présente deux grands axes. Le premier axe, touche les traitements du bois dans le but principal de réduire les variations dimensionnelles et d’améliorer la résistance à l’attaque des champignons lignivores. Le second axe quant à lui, touche l’aspect environnemental du traitement acide citrique-glycérol. Ce dernier a pour but principal de démontrer que le prolongement de la durée de vie en service du produit lambris traité, compense les impacts environnementaux causés par ce traitement. Dans le premier axe, deux traitements ont été réalisés sur deux essences de pin (Pinus strobus L. et Pinus contorta D.). Un traitement à l’anhydride maléique et un autre traitement avec une solution d’acide citrique – glycérol brute (AC-G). Dans le premier cas, les effets de deux paramètres (la durée de séchage et la température d’estérification) sur les résultats des essais de stabilité dimensionnelle, de résistance à la dégradation fongique et de vieillissement accéléré ont été évalués. Trois niveaux de durée de séchage après imprégnation (12 h, 18 h et 24 h) et trois niveaux de température d’estérification (140 °C, 160 °C et 180 °C) ont été considérés. Dans le second cas, après identification du meilleur catalyseur (HCl) et du meilleur ratio acide citrique – glycérol (3/1) pendant les essais préliminaires, les performances de ce traitement sur la stabilité dimensionnelle, la résistance à la pourriture fongique, la dureté de surface et l’adhérence des couches de revêtement de peinture sur la surface du substrat bois ont été analysées. Les résultats obtenus ont été appuyés par une suite d’analyses qualitatives et quantitatives pour mieux comprendre et expliquer. Les analyses qualitatives sont : (i) la spectroscopie infrarouge à transformée de Fourier (IRTF) et (ii) la microscopie électronique à balayage (MEB) tandis que la quantitative, l’analyse par perte de masse a été faite par pesée. Dans le second axe, une analyse des impacts environnementaux du traitement AC-G a été effectuée par le biais du logiciel SimaPro v8. La base de données Ecoinvent v3 et la méthode d’analyse d’impact Impact 2002+ ont été utilisées dans cette partie du travail de thèse. Sur la base des résultats du second traitement (AC-G) et des travaux disponibles dans la littérature, nous avons estimé, une durée de vie en service des lambris traités. Les différents scénarios de la durée de vie du lambris traité mis sur pied par rapport à celle offerte aujourd’hui par l’industrie, nous permettent de modéliser les impacts environnementaux du traitement. A cette fin, l’analyse de cycle de vie (ACV) a été utilisée comme outil de conception. En conclusion, les paramètres, durée de séchage et température d’estérification influencent les résultats obtenus dans le cas du traitement du bois à l’anhydride maléique. La combinaison 24 h de séchage et 180 °C, température d’estérification, représente les paramètres qui offrent les meilleurs résultats de stabilité dimensionnelle, de résistance à la dégradation fongique et de vieillissement accéléré. Le traitement AC-G améliore la stabilité dimensionnelle, la résistance à la dégradation fongique et la dureté de surface des échantillons. Cependant, le traitement réduit l’adhérence des couches de peinture. Les impacts environnementaux produits par le traitement AC-G sont majoritairement liés à la consommation de la ressource énergie (électricité). Le traitement prolonge la durée de vie en service du lambris traité et il a été mis en évidence que le scénario de durée de vie qui permettrait que le lambris traité puisse se présenter comme un produit à faible impact environnemental par rapport au lambris non traité est celui d’une durée de vie de 55 ans.
Resumo:
La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.