7 resultados para Algorithmes d’apprentissage machine

em Université Laval Mémoires et thèses électroniques


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les logiciels actuels sont de grandes tailles, complexes et critiques. Le besoin de qualité exige beaucoup de tests, ce qui consomme de grandes quantités de ressources durant le développement et la maintenance de ces systèmes. Différentes techniques permettent de réduire les coûts liés aux activités de test. Notre travail s’inscrit dans ce cadre, est a pour objectif d’orienter l’effort de test vers les composants logiciels les plus à risque à l’aide de certains attributs du code source. À travers plusieurs démarches empiriques menées sur de grands logiciels open source, développés avec la technologie orientée objet, nous avons identifié et étudié les métriques qui caractérisent l’effort de test unitaire sous certains angles. Nous avons aussi étudié les liens entre cet effort de test et les métriques des classes logicielles en incluant les indicateurs de qualité. Les indicateurs de qualité sont une métrique synthétique, que nous avons introduite dans nos travaux antérieurs, qui capture le flux de contrôle ainsi que différentes caractéristiques du logiciel. Nous avons exploré plusieurs techniques permettant d’orienter l’effort de test vers des composants à risque à partir de ces attributs de code source, en utilisant des algorithmes d’apprentissage automatique. En regroupant les métriques logicielles en familles, nous avons proposé une approche basée sur l’analyse du risque des classes logicielles. Les résultats que nous avons obtenus montrent les liens entre l’effort de test unitaire et les attributs de code source incluant les indicateurs de qualité, et suggèrent la possibilité d’orienter l’effort de test à l’aide des métriques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les préhenseurs robotiques sont largement utilisés en industrie et leur déploiement pourrait être encore plus important si ces derniers étaient plus intelligents. En leur conférant des capacités tactiles et une intelligence leur permettant d’estimer la pose d’un objet saisi, une plus vaste gamme de tâches pourraient être accomplies par les robots. Ce mémoire présente le développement d’algorithmes d’estimation de la pose d’objets saisis par un préhenseur robotique. Des algorithmes ont été développés pour trois systèmes robotisés différents, mais pour les mêmes considérations. Effectivement, pour les trois systèmes la pose est estimée uniquement à partir d’une saisie d’objet, de données tactiles et de la configuration du préhenseur. Pour chaque système, la performance atteignable pour le système minimaliste étudié est évaluée. Dans ce mémoire, les concepts généraux sur l’estimation de la pose sont d’abord exposés. Ensuite, un préhenseur plan à deux doigts comprenant deux phalanges chacun est modélisé dans un environnement de simulation et un algorithme permettant d’estimer la pose d’un objet saisi par le préhenseur est décrit. Cet algorithme est basé sur les arbres d’interprétation et l’algorithme de RANSAC. Par la suite, un système expérimental plan comprenant une phalange supplémentaire par doigt est modélisé et étudié pour le développement d’un algorithme approprié d’estimation de la pose. Les principes de ce dernier sont similaires au premier algorithme, mais les capteurs compris dans le système sont moins précis et des adaptations et améliorations ont dû être appliquées. Entre autres, les mesures des capteurs ont été mieux exploitées. Finalement, un système expérimental spatial composé de trois doigts comprenant trois phalanges chacun est étudié. Suite à la modélisation, l’algorithme développé pour ce système complexe est présenté. Des hypothèses partiellement aléatoires sont générées, complétées, puis évaluées. L’étape d’évaluation fait notamment appel à l’algorithme de Levenberg-Marquardt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’un des problèmes importants en apprentissage automatique est de déterminer la complexité du modèle à apprendre. Une trop grande complexité mène au surapprentissage, ce qui correspond à trouver des structures qui n’existent pas réellement dans les données, tandis qu’une trop faible complexité mène au sous-apprentissage, c’est-à-dire que l’expressivité du modèle est insuffisante pour capturer l’ensemble des structures présentes dans les données. Pour certains modèles probabilistes, la complexité du modèle se traduit par l’introduction d’une ou plusieurs variables cachées dont le rôle est d’expliquer le processus génératif des données. Il existe diverses approches permettant d’identifier le nombre approprié de variables cachées d’un modèle. Cette thèse s’intéresse aux méthodes Bayésiennes nonparamétriques permettant de déterminer le nombre de variables cachées à utiliser ainsi que leur dimensionnalité. La popularisation des statistiques Bayésiennes nonparamétriques au sein de la communauté de l’apprentissage automatique est assez récente. Leur principal attrait vient du fait qu’elles offrent des modèles hautement flexibles et dont la complexité s’ajuste proportionnellement à la quantité de données disponibles. Au cours des dernières années, la recherche sur les méthodes d’apprentissage Bayésiennes nonparamétriques a porté sur trois aspects principaux : la construction de nouveaux modèles, le développement d’algorithmes d’inférence et les applications. Cette thèse présente nos contributions à ces trois sujets de recherches dans le contexte d’apprentissage de modèles à variables cachées. Dans un premier temps, nous introduisons le Pitman-Yor process mixture of Gaussians, un modèle permettant l’apprentissage de mélanges infinis de Gaussiennes. Nous présentons aussi un algorithme d’inférence permettant de découvrir les composantes cachées du modèle que nous évaluons sur deux applications concrètes de robotique. Nos résultats démontrent que l’approche proposée surpasse en performance et en flexibilité les approches classiques d’apprentissage. Dans un deuxième temps, nous proposons l’extended cascading Indian buffet process, un modèle servant de distribution de probabilité a priori sur l’espace des graphes dirigés acycliques. Dans le contexte de réseaux Bayésien, ce prior permet d’identifier à la fois la présence de variables cachées et la structure du réseau parmi celles-ci. Un algorithme d’inférence Monte Carlo par chaîne de Markov est utilisé pour l’évaluation sur des problèmes d’identification de structures et d’estimation de densités. Dans un dernier temps, nous proposons le Indian chefs process, un modèle plus général que l’extended cascading Indian buffet process servant à l’apprentissage de graphes et d’ordres. L’avantage du nouveau modèle est qu’il admet les connections entres les variables observables et qu’il prend en compte l’ordre des variables. Nous présentons un algorithme d’inférence Monte Carlo par chaîne de Markov avec saut réversible permettant l’apprentissage conjoint de graphes et d’ordres. L’évaluation est faite sur des problèmes d’estimations de densité et de test d’indépendance. Ce modèle est le premier modèle Bayésien nonparamétrique permettant d’apprendre des réseaux Bayésiens disposant d’une structure complètement arbitraire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire présente 2 types de méthodes pour effectuer la réorientation d’un robot sériel en chute libre en utilisant les mouvements internes de celui-ci. Ces mouvements sont prescrits à partir d’algorithmes de planification de trajectoire basés sur le modèle dynamique du robot. La première méthode tente de réorienter le robot en appliquant une technique d’optimisation locale fonctionnant avec une fonction potentielle décrivant l’orientation du système, et la deuxième méthode applique des fonctions sinusoïdales aux articulations pour réorienter le robot. Pour tester les performances des méthodes en simulation, on tente de réorienter le robot pour une configuration initiale et finale identiques où toutes les membrures sont alignées mais avec le robot ayant complété une rotation de 180 degrés sur lui-même. Afin de comparer les résultats obtenus avec la réalité, un prototype de robot sériel plan flottant possédant trois membrures et deux liaisons rotoïdes est construit. Les expérimentations effectuées montrent que le prototype est capable d’atteindre les réorientations prescrites si peu de perturbations extérieures sont présentes et ce, même si le contrôle de l’orientation est effectué en boucle ouverte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’imagerie hyperspectrale (HSI) fournit de l’information spatiale et spectrale concernant l’émissivité de la surface des matériaux, ce qui peut être utilisée pour l’identification des minéraux. Pour cela, un matériel de référence ou endmember, qui en minéralogie est la forme la plus pure d’un minéral, est nécessaire. L’objectif principal de ce projet est l’identification des minéraux par imagerie hyperspectrale. Les informations de l’imagerie hyperspectrale ont été enregistrées à partir de l’énergie réfléchie de la surface du minéral. L’énergie solaire est la source d’énergie dans l’imagerie hyperspectrale de télédétection, alors qu’un élément chauffant est la source d’énergie utilisée dans les expériences de laboratoire. Dans la première étape de ce travail, les signatures spectrales des minéraux purs sont obtenues avec la caméra hyperspectrale, qui mesure le rayonnement réfléchi par la surface des minéraux. Dans ce projet, deux séries d’expériences ont été menées dans différentes plages de longueurs d’onde (0,4 à 1 µm et 7,7 à 11,8 µm). Dans la deuxième partie de ce projet, les signatures spectrales obtenues des échantillons individuels sont comparées avec des signatures spectrales de la bibliothèque hyperspectrale de l’ASTER. Dans la troisième partie, trois méthodes différentes de classification hyperspectrale sont considérées pour la classification. Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), et Intercorrélation normalisée (NCC). Enfin, un système d’apprentissage automatique, Extreme Learning Machine (ELM), est utilisé pour identifier les minéraux. Deux types d’échantillons ont été utilisés dans ce projet. Le système d’ELM est divisé en deux parties, la phase d’entraînement et la phase de test du système. Dans la phase d’entraînement, la signature d’un seul échantillon minéral est entrée dans le système, et dans la phase du test, les signatures spectrales des différents minéraux, qui sont entrées dans la phase d’entraînement, sont comparées par rapport à des échantillons de minéraux mixtes afin de les identifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les travaux de ce mémoire traitent du problème d’ordonnancement et d’optimisation de la production dans un environnement de plusieurs machines en présence de contraintes sur les ressources matérielles dans une usine d’extrusion plastique. La minimisation de la somme pondérée des retards est le critère économique autour duquel s’articule cette étude car il représente un critère très important pour le respect des délais. Dans ce mémoire, nous proposons une approche exacte via une formulation mathématique capable des donner des solutions optimales et une approche heuristique qui repose sur deux méthodes de construction de solution sérielle et parallèle et un ensemble de méthodes de recherche dans le voisinage (recuit-simulé, recherche avec tabous, GRASP et algorithme génétique) avec cinq variantes de voisinages. Pour être en totale conformité avec la réalité de l’industrie du plastique, nous avons pris en considération certaines caractéristiques très fréquentes telles que les temps de changement d’outils sur les machines lorsqu’un ordre de fabrication succède à un autre sur une machine donnée. La disponibilité des extrudeuses et des matrices d’extrusion représente le goulot d’étranglement dans ce problème d’ordonnancement. Des séries d’expérimentations basées sur des problèmes tests ont été effectuées pour évaluer la qualité de la solution obtenue avec les différents algorithmes proposés. L’analyse des résultats a démontré que les méthodes de construction de solution ne sont pas suffisantes pour assurer de bons résultats et que les méthodes de recherche dans le voisinage donnent des solutions de très bonne qualité. Le choix du voisinage est important pour raffiner la qualité de la solution obtenue. Mots-clés : ordonnancement, optimisation, extrusion, formulation mathématique, heuristique, recuit-simulé, recherche avec tabous, GRASP, algorithme génétique

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Méthodologie: Simulation; Analyse discriminante linéaire et logistique; Arbres de classification; Réseaux de neurones en base radiale