2 resultados para 3D Model

em Université Laval Mémoires et thèses électroniques


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La mise en registre 3D (opération parfois appelée alignement) est un processus de transformation d’ensembles de données 3D dans un même système de coordonnées afin d’en aligner les éléments communs. Deux ensembles de données alignés ensemble peuvent être les scans partiels des deux vues différentes d’un même objet. Ils peuvent aussi être deux modèles complets, générés à des moments différents, d’un même objet ou de deux objets distincts. En fonction des ensembles de données à traiter, les méthodes d’alignement sont classées en mise en registre rigide ou non-rigide. Dans le cas de la mise en registre rigide, les données sont généralement acquises à partir d’objets rigides. Le processus de mise en registre peut être accompli en trouvant une seule transformation rigide globale (rotation, translation) pour aligner l’ensemble de données source avec l’ensemble de données cible. Toutefois, dans le cas non-rigide, où les données sont acquises à partir d’objets déformables, le processus de mise en registre est plus difficile parce qu’il est important de trouver à la fois une transformation globale et des déformations locales. Dans cette thèse, trois méthodes sont proposées pour résoudre le problème de mise en registre non-rigide entre deux ensembles de données (représentées par des maillages triangulaires) acquises à partir d’objets déformables. La première méthode permet de mettre en registre deux surfaces se chevauchant partiellement. La méthode surmonte les limitations des méthodes antérieures pour trouver une grande déformation globale entre deux surfaces. Cependant, cette méthode est limitée aux petites déformations locales sur la surface afin de valider le descripteur utilisé. La seconde méthode est s’appuie sur le cadre de la première et est appliquée à des données pour lesquelles la déformation entre les deux surfaces est composée à la fois d’une grande déformation globale et de petites déformations locales. La troisième méthode, qui se base sur les deux autres méthodes, est proposée pour la mise en registre d’ensembles de données qui sont plus complexes. Bien que la qualité que elle fournit n’est pas aussi bonne que la seconde méthode, son temps de calcul est accéléré d’environ quatre fois parce que le nombre de paramètres optimisés est réduit de moitié. L’efficacité des trois méthodes repose sur des stratégies via lesquelles les correspondances sont déterminées correctement et le modèle de déformation est exploité judicieusement. Ces méthodes sont mises en oeuvre et comparées avec d’autres méthodes sur diverses données afin d’évaluer leur robustesse pour résoudre le problème de mise en registre non-rigide. Les méthodes proposées sont des solutions prometteuses qui peuvent être appliquées dans des applications telles que la mise en registre non-rigide de vues multiples, la reconstruction 3D dynamique, l’animation 3D ou la recherche de modèles 3D dans des banques de données.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.