1 resultado para multi-scale modelling
Filtro por publicador
- Aberdeen University (5)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (38)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (6)
- Archive of European Integration (1)
- Aston University Research Archive (62)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (55)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (159)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (31)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (20)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (26)
- DRUM (Digital Repository at the University of Maryland) (6)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (4)
- Greenwich Academic Literature Archive - UK (9)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (16)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (23)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (11)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (6)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (43)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (6)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (2)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (50)
- Université de Montréal, Canada (10)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (75)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Résumé : Face à l’accroissement de la résolution spatiale des capteurs optiques satellitaires, de nouvelles stratégies doivent être développées pour classifier les images de télédétection. En effet, l’abondance de détails dans ces images diminue fortement l’efficacité des classifications spectrales; de nombreuses méthodes de classification texturale, notamment les approches statistiques, ne sont plus adaptées. À l’inverse, les approches structurelles offrent une ouverture intéressante : ces approches orientées objet consistent à étudier la structure de l’image pour en interpréter le sens. Un algorithme de ce type est proposé dans la première partie de cette thèse. Reposant sur la détection et l’analyse de points-clés (KPC : KeyPoint-based Classification), il offre une solution efficace au problème de la classification d’images à très haute résolution spatiale. Les classifications effectuées sur les données montrent en particulier sa capacité à différencier des textures visuellement similaires. Par ailleurs, il a été montré dans la littérature que la fusion évidentielle, reposant sur la théorie de Dempster-Shafer, est tout à fait adaptée aux images de télédétection en raison de son aptitude à intégrer des concepts tels que l’ambiguïté et l’incertitude. Peu d’études ont en revanche été menées sur l’application de cette théorie à des données texturales complexes telles que celles issues de classifications structurelles. La seconde partie de cette thèse vise à combler ce manque, en s’intéressant à la fusion de classifications KPC multi-échelle par la théorie de Dempster-Shafer. Les tests menés montrent que cette approche multi-échelle permet d’améliorer la classification finale dans le cas où l’image initiale est de faible qualité. De plus, l’étude effectuée met en évidence le potentiel d’amélioration apporté par l’estimation de la fiabilité des classifications intermédiaires, et fournit des pistes pour mener ces estimations.