2 resultados para multi-quantum-well
Resumo:
Résumé : Face à l’accroissement de la résolution spatiale des capteurs optiques satellitaires, de nouvelles stratégies doivent être développées pour classifier les images de télédétection. En effet, l’abondance de détails dans ces images diminue fortement l’efficacité des classifications spectrales; de nombreuses méthodes de classification texturale, notamment les approches statistiques, ne sont plus adaptées. À l’inverse, les approches structurelles offrent une ouverture intéressante : ces approches orientées objet consistent à étudier la structure de l’image pour en interpréter le sens. Un algorithme de ce type est proposé dans la première partie de cette thèse. Reposant sur la détection et l’analyse de points-clés (KPC : KeyPoint-based Classification), il offre une solution efficace au problème de la classification d’images à très haute résolution spatiale. Les classifications effectuées sur les données montrent en particulier sa capacité à différencier des textures visuellement similaires. Par ailleurs, il a été montré dans la littérature que la fusion évidentielle, reposant sur la théorie de Dempster-Shafer, est tout à fait adaptée aux images de télédétection en raison de son aptitude à intégrer des concepts tels que l’ambiguïté et l’incertitude. Peu d’études ont en revanche été menées sur l’application de cette théorie à des données texturales complexes telles que celles issues de classifications structurelles. La seconde partie de cette thèse vise à combler ce manque, en s’intéressant à la fusion de classifications KPC multi-échelle par la théorie de Dempster-Shafer. Les tests menés montrent que cette approche multi-échelle permet d’améliorer la classification finale dans le cas où l’image initiale est de faible qualité. De plus, l’étude effectuée met en évidence le potentiel d’amélioration apporté par l’estimation de la fiabilité des classifications intermédiaires, et fournit des pistes pour mener ces estimations.
Resumo:
Résumé: L’Institut pour l'étude de la neige et des avalanches en Suisse (SLF) a développé SNOWPACK, un modèle thermodynamique multi-couches de neige permettant de simuler les propriétés géophysiques du manteau neigeux (densité, température, taille de grain, teneur en eau, etc.) à partir desquelles un indice de stabilité est calculé. Il a été démontré qu’un ajustement de la microstructure serait nécessaire pour une implantation au Canada. L'objectif principal de la présente étude est de permettre au modèle SNOWPACK de modéliser de manière plus réaliste la taille de grain de neige et ainsi obtenir une prédiction plus précise de la stabilité du manteau neigeux à l’aide de l’indice basé sur la taille de grain, le Structural Stability Index (SSI). Pour ce faire, l’erreur modélisée (biais) par le modèle a été analysée à l’aide de données précises sur le terrain de la taille de grain à l’aide de l’instrument IRIS (InfraRed Integrated Sphere). Les données ont été recueillies durant l’hiver 2014 à deux sites différents au Canada : parc National des Glaciers, en Colombie-Britannique ainsi qu’au parc National de Jasper. Le site de Fidelity était généralement soumis à un métamorphisme à l'équilibre tandis que celui de Jasper à un métamorphisme cinétique plus prononcé. Sur chacun des sites, la stratigraphie des profils de densités ainsi des profils de taille de grain (IRIS) ont été complétés. Les profils de Fidelity ont été complétés avec des mesures de micropénétromètre (SMP). L’analyse des profils de densité a démontré une bonne concordance avec les densités modélisées (R[indice supérieur 2]=0.76) et donc la résistance simulée pour le SSI a été jugée adéquate. Les couches d’instabilités prédites par SNOWPACK ont été identifiées à l’aide de la variation de la résistance dans les mesures de SMP. L’analyse de la taille de grain optique a révélé une surestimation systématique du modèle ce qui est en accord avec la littérature. L’erreur de taille de grain optique dans un environnement à l’équilibre était assez constante tandis que l’erreur en milieux cinétique était plus variable. Finalement, une approche orientée sur le type de climat représenterait le meilleur moyen pour effectuer une correction de la taille de grain pour une évaluation de la stabilité au Canada.