2 resultados para exponential Rosenbrock-type methods
Resumo:
Résumé : Problématique : Une augmentation importante de la prévalence du diabète a été observée au Nouveau-Brunswick au cours de la dernière décennie. Sachant que le diabète est associé à des complications de santé nombreuses et à des coûts élevés infligés au système de soins de santé, il devient important d’identifier les facteurs pouvant expliquer l’augmentation de la prévalence du diabète. L’étude a pour objectif de décrire l’évolution de ces facteurs afin de prioriser les interventions en lien avec cette maladie. Méthodes : Une revue critique de la littérature a permis l’identification de l’ensemble des facteurs pouvant expliquer l’augmentation de la prévalence du diabète. Des données administratives disponibles au Nouveau-Brunswick et des données tirées d’enquêtes de Statistique Canada ont été utilisées afin de décrire l’évolution de plusieurs des facteurs tirés de la revue critique de la littérature. Résultats : Une augmentation de 120% de la prévalence du diabète de type 2 au Nouveau-Brunswick a été observée entre 2001 et 2014. Cette augmentation pourrait être explicable par l’ensemble des cinq catégories de facteurs pouvant expliquer une augmentation de la prévalence dont plusieurs facteurs de risque individuels (dont l’obésité, le prédiabète et l’hypertension), de facteurs de risque environnementaux (dont l’urbanisation), de l’évolution de la maladie (exprimée par une diminution du taux de mortalité et une augmentation de l’incidence), de l’effet de détection (augmentation du nombre de personnes testées, diminution de la valeur d’HbA1c et de l’âge à la détection) et d’un effet du changement dans l’environnement (exprimé par un effet de période et de cohorte). Conclusion: L’augmentation de la prévalence du diabète notée au Nouveau-Brunswick pourrait s’expliquer par plusieurs facteurs de risque individuels, environnementaux, de l’évolution de la maladie, de l’effet de détection et d’un effet du changement dans l’environnement. Cette étude permettra de guider les actions sur le diabète au Nouveau-Brunswick et d’inspirer les autres provinces et pays à identifier les facteurs pouvant contribuer à l’augmentation de la prévalence du diabète grâce à la liste de l’ensemble des facteurs potentiellement explicatifs.
Resumo:
Abstract: Quantitative Methods (QM) is a compulsory course in the Social Science program in CEGEP. Many QM instructors assign a number of homework exercises to give students the opportunity to practice the statistical methods, which enhances their learning. However, traditional written exercises have two significant disadvantages. The first is that the feedback process is often very slow. The second disadvantage is that written exercises can generate a large amount of correcting for the instructor. WeBWorK is an open-source system that allows instructors to write exercises which students answer online. Although originally designed to write exercises for math and science students, WeBWorK programming allows for the creation of a variety of questions which can be used in the Quantitative Methods course. Because many statistical exercises generate objective and quantitative answers, the system is able to instantly assess students’ responses and tell them whether they are right or wrong. This immediate feedback has been shown to be theoretically conducive to positive learning outcomes. In addition, the system can be set up to allow students to re-try the problem if they got it wrong. This has benefits both in terms of student motivation and reinforcing learning. Through the use of a quasi-experiment, this research project measured and analysed the effects of using WeBWorK exercises in the Quantitative Methods course at Vanier College. Three specific research questions were addressed. First, we looked at whether students who did the WeBWorK exercises got better grades than students who did written exercises. Second, we looked at whether students who completed more of the WeBWorK exercises got better grades than students who completed fewer of the WeBWorK exercises. Finally, we used a self-report survey to find out what students’ perceptions and opinions were of the WeBWorK and the written exercises. For the first research question, a crossover design was used in order to compare whether the group that did WeBWorK problems during one unit would score significantly higher on that unit test than the other group that did the written problems. We found no significant difference in grades between students who did the WeBWorK exercises and students who did the written exercises. The second research question looked at whether students who completed more of the WeBWorK exercises would get significantly higher grades than students who completed fewer of the WeBWorK exercises. The straight-line relationship between number of WeBWorK exercises completed and grades was positive in both groups. However, the correlation coefficients for these two variables showed no real pattern. Our third research question was investigated by using a survey to elicit students’ perceptions and opinions regarding the WeBWorK and written exercises. Students reported no difference in the amount of effort put into completing each type of exercise. Students were also asked to rate each type of exercise along six dimensions and a composite score was calculated. Overall, students gave a significantly higher score to the written exercises, and reported that they found the written exercises were better for understanding the basic statistical concepts and for learning the basic statistical methods. However, when presented with the choice of having only written or only WeBWorK exercises, slightly more students preferred or strongly preferred having only WeBWorK exercises. The results of this research suggest that the advantages of using WeBWorK to teach Quantitative Methods are variable. The WeBWorK system offers immediate feedback, which often seems to motivate students to try again if they do not have the correct answer. However, this does not necessarily translate into better performance on the written tests and on the final exam. What has been learned is that the WeBWorK system can be used by interested instructors to enhance student learning in the Quantitative Methods course. Further research may examine more specifically how this system can be used more effectively.