4 resultados para Simulations Monte Carlo de la chimie de trajectoires
Resumo:
Résumé : Les ions hydronium (H3O + ) sont formés, à temps courts, dans les grappes ou le long des trajectoires de la radiolyse de l'eau par des rayonnements ionisants à faible transfert d’énergie linéaire (TEL) ou à TEL élevé. Cette formation in situ de H3O + rend la région des grappes/trajectoires du rayonnement temporairement plus acide que le milieu environnant. Bien que des preuves expérimentales de l’acidité d’une grappe aient déjà été signalées, il n'y a que des informations fragmentaires quant à son ampleur et sa dépendance en temps. Dans ce travail, nous déterminons les concentrations en H3O + et les valeurs de pH correspondantes en fonction du temps à partir des rendements de H3O + calculés à l’aide de simulations Monte Carlo de la chimie intervenant dans les trajectoires. Quatre ions incidents de différents TEL ont été sélectionnés et deux modèles de grappe/trajectoire ont été utilisés : 1) un modèle de grappe isolée "sphérique" (faible TEL) et 2) un modèle de trajectoire "cylindrique" (TEL élevé). Dans tous les cas étudiés, un effet de pH acide brusque transitoire, que nous appelons un effet de "pic acide", est observé immédiatement après l’irradiation. Cet effet ne semble pas avoir été exploré dans l'eau ou un milieu cellulaire soumis à un rayonnement ionisant, en particulier à haut TEL. À cet égard, ce travail soulève des questions sur les implications possibles de cet effet en radiobiologie, dont certaines sont évoquées brièvement. Nos calculs ont ensuite été étendus à l’étude de l'influence de la température, de 25 à 350 °C, sur la formation in situ d’ions H3O + et l’effet de pic acide qui intervient à temps courts lors de la radiolyse de l’eau à faible TEL. Les résultats montrent une augmentation marquée de la réponse de pic acide à hautes températures. Comme de nombreux processus intervenant dans le cœur d’un réacteur nucléaire refroidi à l'eau dépendent de façon critique du pH, la question ici est de savoir si ces fortes variations d’acidité, même si elles sont hautement localisées et transitoires, contribuent à la corrosion et l’endommagement des matériaux.
Resumo:
Résumé: Ce mémoire de maîtrise est une étude des probabilités d’interactions (sections efficaces) des électrons de basse énergie avec une molécule d’intérêt biologique. Cette molécule est le tétrahydrofurane (THF) qui est un bon modèle de la molécule constituant la colonne vertébrale de l’ADN; le désoxyribose. Étant donné la grande quantité d’électrons secondaires libérés lors du passage des radiations à travers la matière biologique et sachant que ceux-ci déposent la majorité de l’énergie, l’étude de leurs interactions avec les molécules constituant l’ADN devient rapidement d’une grande importance. Les mesures de sections efficaces sont faites à l’aide d’un spectromètre à haute résolution de pertes d’énergie de l’électron. Les spectres de pertes d’énergie de l’électron obtenus de cet appareil permettent de calculer les valeurs de sections efficaces pour chaque vibration en fonction de l’énergie incidente de l’électron. L’article présenté dans ce mémoire traite de ces mesures et des résultats. En effet, il présente et explique en détail les conditions expérimentales, il décrit la méthode de déconvolution qui est utilisée pour obtenir les valeurs de sections efficaces et il présente et discute des 4 résonances observées dans la dépendance en énergie des sections efficaces. En effet, cette étude a permis de localiser en énergie 4 résonances et celles-ci ont toutes été confirmées par des recherches expérimentales et théoriques antérieures sur le sujet des collisions électrons lents-THF. En outre, jamais ces résonances n’avaient été observées simultanément dans une même étude et jamais la résonance trouvée à basse énergie n’avait été observée avec autant d’intensité que cette présente étude. Cette étude a donc permis de raffiner notre compréhension fondamentale des processus résonants impliqués lors de collisions d’électrons secondaires avec le THF. Les valeurs de sections efficaces sont, quant à elles, très prisées par les théoriciens et sont nécessaires pour les simulations Monte Carlo pour prédire, par exemple, le nombre d’ions formées après le passage des radiations. Ces valeurs pourront justement être utilisées dans les modèles de distribution et dépôt d’énergie au niveau nanoscopique dans les milieux biologiques et ceux-ci pourront éventuellement améliorer l’efficacité des modalités radiothérapeutiques.
Resumo:
L'imagerie par tomographie optique diffuse requiert de modéliser la propagation de la lumière dans un tissu biologique pour une configuration optique et géométrique donnée. On appelle cela le problème direct. Une nouvelle approche basée sur la méthode des différences finies pour modéliser numériquement via l'équation de la diffusion (ED) la propagation de la lumière dans le domaine temporel dans un milieu inhomogène 3D avec frontières irrégulières est développée pour le cas de l'imagerie intrinsèque, c'est-à-dire l'imagerie des paramètres optiques d'absorption et de diffusion d'un tissu. Les éléments finis, lourds en calculs, car utilisant des maillages non structurés, sont généralement préférés, car les différences finies ne permettent pas de prendre en compte simplement des frontières irrégulières. L'utilisation de la méthode de blocking-off ainsi que d'un filtre de Sobel en 3D peuvent en principe permettre de surmonter ces difficultés et d'obtenir des équations rapides à résoudre numériquement avec les différences finies. Un algorithme est développé dans le présent ouvrage pour implanter cette approche et l'appliquer dans divers cas puis de la valider en comparant les résultats obtenus à ceux de simulations Monte-Carlo qui servent de référence. L'objectif ultime du projet est de pouvoir imager en trois dimensions un petit animal, c'est pourquoi le modèle de propagation est au coeur de l'algorithme de reconstruction d'images. L'obtention d'images requière la résolution d'un problème inverse de grandes dimensions et l'algorithme est basé sur une fonction objective que l'on minimise de façon itérative à l'aide d'une méthode basée sur le gradient. La fonction objective mesure l'écart entre les mesures expérimentales faites sur le sujet et les prédictions de celles-ci obtenues du modèle de propagation. Une des difficultés dans ce type d'algorithme est l'obtention du gradient. Ceci est fait à l'aide de variables auxiliaire (ou adjointes). Le but est de développer et de combiner des méthodes qui permettent à l'algorithme de converger le plus rapidement possible pour obtenir les propriétés optiques les plus fidèles possible à la réalité capable d'exploiter la dépendance temporelle des mesures résolues en temps, qui fournissent plus d'informations tout autre type de mesure en TOD. Des résultats illustrant la reconstruction d'un milieu complexe comme une souris sont présentés pour démontrer le potentiel de notre approche.
Resumo:
Résumé : Les performances de détecteurs à scintillation, composés d’un cristal scintillateur couplé à un photodétecteur, dépendent de façon critique de l’efficacité de la collecte et de l’extraction des photons de scintillation du cristal vers le capteur. Dans les systèmes d’imagerie hautement pixellisés (e.g. TEP, TDM), les scintillateurs doivent être arrangés en matrices compactes avec des facteurs de forme défavorables pour le transport des photons, au détriment des performances du détecteur. Le but du projet est d’optimiser les performances de ces détecteurs pixels par l'identification des sources de pertes de lumière liées aux caractéristiques spectrales, spatiales et angulaires des photons de scintillation incidents sur les faces des scintillateurs. De telles informations acquises par simulation Monte Carlo permettent une pondération adéquate pour l'évaluation de gains atteignables par des méthodes de structuration du scintillateur visant à une extraction de lumière améliorée vers le photodétecteur. Un plan factoriel a permis d'évaluer la magnitude de paramètres affectant la collecte de lumière, notamment l'absorption des matériaux adhésifs assurant l'intégrité matricielle des cristaux ainsi que la performance optique de réflecteurs, tous deux ayant un impact considérable sur le rendement lumineux. D'ailleurs, un réflecteur abondamment utilisé en raison de ses performances optiques exceptionnelles a été caractérisé dans des conditions davantage réalistes par rapport à une immersion dans l'air, où sa réflectivité est toujours rapportée. Une importante perte de réflectivité lorsqu'il est inséré au sein de matrices de scintillateurs a été mise en évidence par simulations puis confirmée expérimentalement. Ceci explique donc les hauts taux de diaphonie observés en plus d'ouvrir la voie à des méthodes d'assemblage en matrices limitant ou tirant profit, selon les applications, de cette transparence insoupçonnée.