3 resultados para Ségrégation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les caractéristiques physiques des granulats ont une forte influence sur la performance du béton, y compris l'ouvrabilité du béton, la zone de transition, le module d'élasticité, la résistance mécanique, etc. Comparativement aux bétons conventionnels vibrés, les bétons fluides à rhéologie adapté (BFRA) beaucoup plus complexes, doivent présenter une bonne stabilité (résistance à la ségrégation), une bonne rhéologie et les résistances mécaniques souhaitées. Le choix des granulats joue un rôle majeur pour l'obtention de ces différentes propriétés. Une meilleure compréhension de l'influence des caractéristiques physiques sur la performance des BFRA est nécessaire pour leur optimisation afin d'obtenir un bon rapport performance-coût. L'objectif principal de cette étude est de comprendre l'influence des propriétés physiques des granulats (forme, densité, granulométrie, module de finesse, et la quantité de particules plates ou allongées) sur la demande en superplastifiant, la rhéologie et les propriétés mécaniques des BFRA. Les types de bétons étudiés sont les bétons autoplaçants (BAP) destinés à la construction de bâtiments, les bétons semi-autoplaçants (BSAP) destinés pour la construction et la réparation des infrastructures et les BAP destinés à la préfabrication. Quatre rapports sable/granulat total (S/G), deux sables composés (manufacturé et naturel) au laboratoire de différentes finesses (MF = 2,5 et MF = 3) et un sable naturel provenant d'usines ont été utilisés. L'influence de la compacité granulaire, du type de sable (naturel vs manufacturé) et de la teneur en fines du squelette granulaire sur les propriétés rhéologiques et mécaniques des BFRA est étudiée. Douze mélanges de BSAP ont été formulés à cet effet. L'influence du type de granulométrie (continue ou discontinue), du diamètre nominal maximal des gros granulats (10, 14 et 20 mm) et de la forme des gros granulats (roulé, aplati et allongé) sur les propriétés rhéologiques et mécaniques des BFRA ont été étudiées. Quatre types de gros granulats provenant de l'industrie et sept gros granulats reconstitués en laboratoire ont été utilisés pour prendre en compte tous ces paramètres. Les résultats montrent que la compacité granulaire est une donnée importante à prendre en compte pour la formulation d'un BFRA (BAP ou BSAP). Cette étude a également montré que les particules fines de diamètres inférieurs à 315 [micro]m sont celles qui influencent les paramètres rhéologiques des BSAP. Pour un rapport E/L constant et un diamètre d'étalement fixe, l'augmentation de la teneur de particules passant le tamis 315 [micro]m augmente la viscosité plastique, diminue le seuil de cisaillement et augmente la stabilité statique des bétons. Cette étude préconise l'utilisation des granulats concassés de granulométrie continue contenant des particules équidimensionnelles pour améliorer les propriétés rhéologiques des bétons. Enfin, grâce à cette étude, la production des BAP dans les industries connaîtra une avancée majeure par un choix stratégique des granulats. Les industries pourront notamment faire une utilisation optimale des superplastifiants, adapter la rhéologie des BAP (viscosité plastique et seuil de cisaillement) au type de BAP tout en conservant leurs caractéristiques mécaniques. Cette étude bien que scientifique, répond en d'autres termes aux besoins de l'industrie car elle propose un bon rapport performance-coût des BAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Recently, there is a great interest to study the flow characteristics of suspensions in different environmental and industrial applications, such as snow avalanches, debris flows, hydrotransport systems, and material casting processes. Regarding rheological aspects, the majority of these suspensions, such as fresh concrete, behave mostly as non-Newtonian fluids. Concrete is the most widely used construction material in the world. Due to the limitations that exist in terms of workability and formwork filling abilities of normal concrete, a new class of concrete that is able to flow under its own weight, especially through narrow gaps in the congested areas of the formwork was developed. Accordingly, self-consolidating concrete (SCC) is a novel construction material that is gaining market acceptance in various applications. Higher fluidity characteristics of SCC enable it to be used in a number of special applications, such as densely reinforced sections. However, higher flowability of SCC makes it more sensitive to segregation of coarse particles during flow (i.e., dynamic segregation) and thereafter at rest (i.e., static segregation). Dynamic segregation can increase when SCC flows over a long distance or in the presence of obstacles. Therefore, there is always a need to establish a trade-off between the flowability, passing ability, and stability properties of SCC suspensions. This should be taken into consideration to design the casting process and the mixture proportioning of SCC. This is called “workability design” of SCC. An efficient and non-expensive workability design approach consists of the prediction and optimization of the workability of the concrete mixtures for the selected construction processes, such as transportation, pumping, casting, compaction, and finishing. Indeed, the mixture proportioning of SCC should ensure the construction quality demands, such as demanded levels of flowability, passing ability, filling ability, and stability (dynamic and static). This is necessary to develop some theoretical tools to assess under what conditions the construction quality demands are satisfied. Accordingly, this thesis is dedicated to carry out analytical and numerical simulations to predict flow performance of SCC under different casting processes, such as pumping and tremie applications, or casting using buckets. The L-Box and T-Box set-ups can evaluate flow performance properties of SCC (e.g., flowability, passing ability, filling ability, shear-induced and gravitational dynamic segregation) in casting process of wall and beam elements. The specific objective of the study consists of relating numerical results of flow simulation of SCC in L-Box and T-Box test set-ups, reported in this thesis, to the flow performance properties of SCC during casting. Accordingly, the SCC is modeled as a heterogeneous material. Furthermore, an analytical model is proposed to predict flow performance of SCC in L-Box set-up using the Dam Break Theory. On the other hand, results of the numerical simulation of SCC casting in a reinforced beam are verified by experimental free surface profiles. The results of numerical simulations of SCC casting (modeled as a single homogeneous fluid), are used to determine the critical zones corresponding to the higher risks of segregation and blocking. The effects of rheological parameters, density, particle contents, distribution of reinforcing bars, and particle-bar interactions on flow performance of SCC are evaluated using CFD simulations of SCC flow in L-Box and T-box test set-ups (modeled as a heterogeneous material). Two new approaches are proposed to classify the SCC mixtures based on filling ability and performability properties, as a contribution of flowability, passing ability, and dynamic stability of SCC.