4 resultados para Relation quantitative propriété-propriété
Resumo:
In many studies of the side-chain liquid crystalline polymers (SCLCPs) bearing azobenzene mesogens as pendant groups, obtaining the orientation of azobenzene mesogens at a macroscopic scale as well as its control is important, because it impacts many properties related to the cooperative motion characteristic of liquid crystals and the trans-cis photoisomerization of the azobenzene molecules. Various means can be used to align the mesogens in the polymers, including rubbed surface, mechanical stretching or shearing, and electric or magnetic field. In the case of azobenzene-containing SCLCPs, another method consists in using linearly polarized light (LPL) to induce orientation of azobenzene mesogens perpendicular to the polarization direction of the excitation light, and such photoinduced orientation has been the subject of numerous studies. In the first study realized in this thesis (Chapter 1), we carried out the first systematic investigation on the interplay of the mechanically and optically induced orientation of azobenzene mesogens as well as the effect of thermal annealing in a SCLCP and a diblock copolymer comprising two SCLCPs bearing azobenzene and biphenyl mesogens, respectively. Using a supporting-film approach previously developed by our group, a given polymer film can be first stretched in either the nematic or smectic phase to yield orientation of azobenzene mesogens either parallel or perpendicular to the strain direction, then exposed to unpolarized UV light to erase the mechanically induced orientation upon the trans–cis isomerization, followed by linearly polarized visible light for photoinduced reorientation as a result of the cis–trans backisomerization, and finally heated to different LC phases for thermal annealing. Using infrared dichroism to monitor the change in orientation degree, the results of this study have unveiled complex and different orientational behavior and coupling effects for the homopolymer of poly{6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} (PAzMA) and the diblock copolymer of PAzMA-block- poly{6-[4-(4-cyanophenyl) phenoxy]hexyl methacrylate} (PAzMA-PBiPh). Most notably for the homopolymer, the stretching-induced orientation exerts no memory effect on the photoinduced reorientation, the direction of which is determined by the polarization of the visible light regardless of the mechanically induced orientation direction in the stretched film. Moreover, subsequent thermal annealing in the nematic phase leads to parallel orientation independently of the initial mechanically or photoinduced orientation direction. By contrast, the diblock copolymer displays a strong orientation memory effect. Regardless of the condition used, either for photoinduced reorientation or thermal annealing in the liquid crystalline phase, only the initial stretching-induced perpendicular orientation of azobenzene mesogens can be recovered. The reported findings provide new insight into the different orientation mechanisms, and help understand the important issue of orientation induction and control in azobenzene-containing SCLCPs. The second study presented in this thesis (Chapter 2) deals with supramolecular side-chain liquid crystalline polymers (S-SCLCPs), in which side-group mesogens are linked to the chain backbone through non-covalent interactions such as hydrogen bonding. Little is known about the mechanically induced orientation of mesogens in S-SCLCPs. In contrast to covalent SCLCPs, free-standing, solution-cast thin films of a S-SCLCP, built up with 4-(4’-heptylphenyl) azophenol (7PAP) H-bonded to poly(4-vinyl pyridine) (P4VP), display excellent stretchability. Taking advantage of this finding, we investigated the stretching-induced orientation and the viscoelastic behavior of this S-SCLCP, and the results revealed major differences between supramolecular and covalent SCLCPs. For covalent SCLCPs, the strong coupling between chain backbone and side-group mesogens means that the two constituents can mutually influence each other; the lack of chain entanglements is a manifestation of this coupling effect, which accounts for the difficulty in obtaining freestanding and mechanically stretchable films. Upon elongation of a covalent SCLCP film cast on a supporting film, the mechanical force acts on the coupled polymer backbone and mesogenic side groups, and the latter orients cooperatively and efficiently (high orientation degree), which, in turn, imposes an anisotropic conformation of the chain backbone (low orientation degree). In the case of the S-SCLCP of P4VP-7PAP, the coupling between the side-group mesogens and the chain backbone is much weakened owing to the dynamic dissociation/association of the H-bonds linking the two constituents. The consequence of this decoupling is readily observable from the viscoelastic behavior. The average molecular weight between entanglements is basically unchanged in both the smectic and isotropic phase, and is similar to non-liquid crystalline samples. As a result, the S-SCLCP can easily form freestanding and stretchable films. Furthermore, the stretching induced orientation behavior of P4VP-7PAP is totally different. Stretching in the smectic phase results in a very low degree of orientation of the side-group mesogens even at a large strain (500%), while the orientation of the main chain backbone develops steadily with increasing the strain, much the same way as amorphous polymers. The results imply that upon stretching, the mechanical force is mostly coupled to the polymer backbone and leads to its orientation, while the main chain orientation exerts little effect on orienting the H-bonded mesogenic side groups. This surprising finding is explained by the likelihood that during stretching in the smectic phase (at relatively higher temperatures) the dynamic dissociation of the H-bonds allow the side-group mesogens to be decoupled from the chain backbone and relax quickly. In the third project (Chapter 3), we investigated the shape memory properties of a S-SCLCP prepared by tethering two azobenzene mesogens, namely, 7PAP and 4-(4'-ethoxyphenyl) azophenol (2OPAP), to P4VP through H-bonding. The results revealed that, despite the dynamic nature of the linking H-bonds, the supramolecular SCLCP behaves similarly to covalent SCLCP by exhibiting a two-stage thermally triggered shape recovery process governed by both the glass transition and the LC-isotropic phase transition. The ability for the supramolecular SCLCP to store part of the strain energy above T[subscript g] in the LC phase enables the triple-shape memory property. Moreover, thanks to the azobenzene mesogens used, which can undergo trans-cis photoisomerization, exposure the supramolecular SCLCP to UV light can also trigger the shape recovery process, thus enabling the remote activation and the spatiotemporal control of the shape memory. By measuring the generated contractile force and its removal upon turning on and off the UV light, respectively, on an elongated film under constant strain, it seems that the optically triggered shape recovery stems from a combination of a photothermal effect and an effect of photoplasticization or of an order-disorder phase transition resulting from the trans-cis photoisomerization of azobenzene mesogens.
Resumo:
L'objectif de ce mémoire est de fournir une nouvelle preuve pour la "Non-leaving face property" dans le cas An à l'aide de l'approximation dans les catégories amassées. Cette preuve ouvre la porte pour une généralisation pour d'autres cas.
Resumo:
Abstract: Quantitative Methods (QM) is a compulsory course in the Social Science program in CEGEP. Many QM instructors assign a number of homework exercises to give students the opportunity to practice the statistical methods, which enhances their learning. However, traditional written exercises have two significant disadvantages. The first is that the feedback process is often very slow. The second disadvantage is that written exercises can generate a large amount of correcting for the instructor. WeBWorK is an open-source system that allows instructors to write exercises which students answer online. Although originally designed to write exercises for math and science students, WeBWorK programming allows for the creation of a variety of questions which can be used in the Quantitative Methods course. Because many statistical exercises generate objective and quantitative answers, the system is able to instantly assess students’ responses and tell them whether they are right or wrong. This immediate feedback has been shown to be theoretically conducive to positive learning outcomes. In addition, the system can be set up to allow students to re-try the problem if they got it wrong. This has benefits both in terms of student motivation and reinforcing learning. Through the use of a quasi-experiment, this research project measured and analysed the effects of using WeBWorK exercises in the Quantitative Methods course at Vanier College. Three specific research questions were addressed. First, we looked at whether students who did the WeBWorK exercises got better grades than students who did written exercises. Second, we looked at whether students who completed more of the WeBWorK exercises got better grades than students who completed fewer of the WeBWorK exercises. Finally, we used a self-report survey to find out what students’ perceptions and opinions were of the WeBWorK and the written exercises. For the first research question, a crossover design was used in order to compare whether the group that did WeBWorK problems during one unit would score significantly higher on that unit test than the other group that did the written problems. We found no significant difference in grades between students who did the WeBWorK exercises and students who did the written exercises. The second research question looked at whether students who completed more of the WeBWorK exercises would get significantly higher grades than students who completed fewer of the WeBWorK exercises. The straight-line relationship between number of WeBWorK exercises completed and grades was positive in both groups. However, the correlation coefficients for these two variables showed no real pattern. Our third research question was investigated by using a survey to elicit students’ perceptions and opinions regarding the WeBWorK and written exercises. Students reported no difference in the amount of effort put into completing each type of exercise. Students were also asked to rate each type of exercise along six dimensions and a composite score was calculated. Overall, students gave a significantly higher score to the written exercises, and reported that they found the written exercises were better for understanding the basic statistical concepts and for learning the basic statistical methods. However, when presented with the choice of having only written or only WeBWorK exercises, slightly more students preferred or strongly preferred having only WeBWorK exercises. The results of this research suggest that the advantages of using WeBWorK to teach Quantitative Methods are variable. The WeBWorK system offers immediate feedback, which often seems to motivate students to try again if they do not have the correct answer. However, this does not necessarily translate into better performance on the written tests and on the final exam. What has been learned is that the WeBWorK system can be used by interested instructors to enhance student learning in the Quantitative Methods course. Further research may examine more specifically how this system can be used more effectively.
Resumo:
Résumé : Le trouble de l’acquisition de la coordination (TAC), d’étiologie encore indéterminée, est une anomalie neurologique affectant environ 6% des enfants de l'âge scolaire. Le TAC se manifeste essentiellement par un déficit au niveau des exécutions motrices. Le présent travail de recherche comporte deux volets portant sur le TAC. Premièrement, une étude clinique sur 129 sujets âgés de 4 à 18 ans a permis de classifier les caractéristiques du TAC en sous-groupes cliniques. Trente-trois caractéristiques du TAC, les plus fréquemment rapportées dans la littérature, ont été recensées chez nos sujets. L'application d'évaluations statistiques a permis de faire ressortir trois classes essentielles. Le deuxième volet consistait à identifier les régions cérébrales impliquées dans une tâche motrice à l'aide de l'imagerie par la tomographie d'émission par positrons (TEP). Deux sujets avec TAC et deux sujets normaux ont été étudiés en deux séances d'imagerie TEP dont l'une au repos et l'autre en tapotant du pouce sur les doigts de la main gauche non-dominante. Les analyses du premier volet ont montré, entre autres, que le TAC touchait 3.17 garçons pour une fille, que tous les sujets étaient lents, que 47% des sujets étaient gauchers ou ambidextres alors que seulement 10% sont gauchers dans la population générale, que 26% avaient une dyspraxie verbale, et que 83% avaient été diagnostiqués anxieux. Les sujets ont été classés en trois sous-groupes: 1- maladroits et autres caractéristiques, sans problème de langage; 2- trouble de l’estime de soi et relation avec les pairs; 3- difficulté de langage. En imagerie, les structures cérébrales ont été classées selon leur captation du 18F-fluorodesoxyglucose (FDG) dans les hémisphères droit et gauche, avant et après l'activation, et en comparaison avec les sujets normaux. Trois types de structures cérébrales sont ressortis avec les statistiques: des structures activées, celles relativement non sollicitées et des structures désactivées. Il y avait plus de variations dans la captation du FDG chez les sujets avec TAC que chez les normaux. En conclusion, la caractérisation des sujets avec TAC par le diagnostic clinique et par l'imagerie peut procurer un plan de thérapie adéquat et ciblé étant donné que le TAC a un large spectre et pourrait coexister avec d'autres déficits cérébraux.