3 resultados para OWSC, CFD, OpenFOAM, WEC


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans les turbomachines, le bruit du volume tournant est considéré comme une source majeure d’inconfort. La connaissance et l’identification des sources de bruit du rotor sont primordiales pour la conception d’une machine silencieuse et énergétiquement plus efficace. Ce document examine la capacité à la fois de la décomposition orthogonale aux valeurs (POD) et la décomposition aux valeurs singulières (SVD) à identifier les zones sur la surface d’une source (pale de ventilateur) fixe ou en mouvement subsonique qui contribuent le plus à la puissance acoustique rayonnée. La méthode de calcul de la dynamique des fluides (CFD) du code source OpenFoam est utilisée comme une première étape pour évaluer le champ de pression à la surface de la pale en mouvement subsonique. Les fluctuations de ce champ de pression permettent d’estimer à la fois le bruit de charge et la puissance sonore qui est rayonnée par la pale basée sur l’analogie acoustique de Ffowcs Williams et Hawkings (FW&H). Dans une deuxième étape, le bruit de charge estimé est également utilisé tant pour les approches POD et SVD. On remarque que la puissance sonore reconstruite par les deux dernières approches en se fondant uniquement sur les modes acoustiques les plus importants est similaire à celle prédite par l’analogie de FW&H. De plus, les modes les plus rayonnants estimés par la méthode SVD sont projetés sur la surface de la pale, mettant ainsi en évidence leurs emplacements. Il est alors prévu que cette identification soit utilisée comme guide pour l’ingénieur dans la conception d’une roue moins bruyante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La compréhension de l'aérothermique d'un véhicule durant sa phase de développement est une question essentielle afin d'assurer, d'une part, un bon refroidissement et une bonne efficacité de ses composants et d'autre part de réduire la force de traînée et évidement le rejet des gaz à effet de serre ou la consommation d'essence. Cette thèse porte sur la simulation numérique et la validation expérimentale de l'aérothermique d'un véhicule à trois roues dont deux, en avant et une roue motrice en arrière. La simulation numérique est basée sur la résolution des équations de conservation de la masse, de la quantité de mouvement et de l'énergie en utilisant l'approche RANS (Reynolds-Averaged Navier-Stokes). Le rayonnement thermique est modélisé grâce à la méthode S2S (Surface to Surface) qui suppose que le milieu séparant les deux surfaces rayonnantes, ici de l'air, ne participe pas au processus du rayonnement. Les radiateurs sont considérés comme des milieux poreux orthotropes où la perte de pression est calculée en fonction de leurs propriétés inertielle et visqueuse; leur dissipation thermique est modélisée par la méthode Dual flow. Une première validation de l'aérodynamique est faite grâce à des essais en soufflerie. Ensuite, une deuxième validation de la thermique est faite grâce à des essais routiers. Un deuxième objectif de la thèse est consacré à la simulation numérique de l'aérodynamique en régime transitoire du véhicule. La simulation est faite à l'aide de l'approche Detached eddy simulation (DES). Une validation expérimentale est faite à partir d'étude en soufflerie grâce à des mesures locales de vitesse à l'aide de sondes cobra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Recently, there is a great interest to study the flow characteristics of suspensions in different environmental and industrial applications, such as snow avalanches, debris flows, hydrotransport systems, and material casting processes. Regarding rheological aspects, the majority of these suspensions, such as fresh concrete, behave mostly as non-Newtonian fluids. Concrete is the most widely used construction material in the world. Due to the limitations that exist in terms of workability and formwork filling abilities of normal concrete, a new class of concrete that is able to flow under its own weight, especially through narrow gaps in the congested areas of the formwork was developed. Accordingly, self-consolidating concrete (SCC) is a novel construction material that is gaining market acceptance in various applications. Higher fluidity characteristics of SCC enable it to be used in a number of special applications, such as densely reinforced sections. However, higher flowability of SCC makes it more sensitive to segregation of coarse particles during flow (i.e., dynamic segregation) and thereafter at rest (i.e., static segregation). Dynamic segregation can increase when SCC flows over a long distance or in the presence of obstacles. Therefore, there is always a need to establish a trade-off between the flowability, passing ability, and stability properties of SCC suspensions. This should be taken into consideration to design the casting process and the mixture proportioning of SCC. This is called “workability design” of SCC. An efficient and non-expensive workability design approach consists of the prediction and optimization of the workability of the concrete mixtures for the selected construction processes, such as transportation, pumping, casting, compaction, and finishing. Indeed, the mixture proportioning of SCC should ensure the construction quality demands, such as demanded levels of flowability, passing ability, filling ability, and stability (dynamic and static). This is necessary to develop some theoretical tools to assess under what conditions the construction quality demands are satisfied. Accordingly, this thesis is dedicated to carry out analytical and numerical simulations to predict flow performance of SCC under different casting processes, such as pumping and tremie applications, or casting using buckets. The L-Box and T-Box set-ups can evaluate flow performance properties of SCC (e.g., flowability, passing ability, filling ability, shear-induced and gravitational dynamic segregation) in casting process of wall and beam elements. The specific objective of the study consists of relating numerical results of flow simulation of SCC in L-Box and T-Box test set-ups, reported in this thesis, to the flow performance properties of SCC during casting. Accordingly, the SCC is modeled as a heterogeneous material. Furthermore, an analytical model is proposed to predict flow performance of SCC in L-Box set-up using the Dam Break Theory. On the other hand, results of the numerical simulation of SCC casting in a reinforced beam are verified by experimental free surface profiles. The results of numerical simulations of SCC casting (modeled as a single homogeneous fluid), are used to determine the critical zones corresponding to the higher risks of segregation and blocking. The effects of rheological parameters, density, particle contents, distribution of reinforcing bars, and particle-bar interactions on flow performance of SCC are evaluated using CFD simulations of SCC flow in L-Box and T-box test set-ups (modeled as a heterogeneous material). Two new approaches are proposed to classify the SCC mixtures based on filling ability and performability properties, as a contribution of flowability, passing ability, and dynamic stability of SCC.