2 resultados para ORIENTE ANTIGUO
Resumo:
Résumé : L'imagerie par résonance magnétique pondérée en diffusion est une modalité unique sensible aux mouvements microscopiques des molécules d'eau dans les tissus biologiques. Il est possible d'utiliser les caractéristiques de ce mouvement pour inférer la structure macroscopique des faisceaux de la matière blanche du cerveau. La technique, appelée tractographie, est devenue l'outil de choix pour étudier cette structure de façon non invasive. Par exemple, la tractographie est utilisée en planification neurochirurgicale et pour le suivi du développement de maladies neurodégénératives. Dans cette thèse, nous exposons certains des biais introduits lors de reconstructions par tractographie, et des méthodes sont proposées pour les réduire. D'abord, nous utilisons des connaissances anatomiques a priori pour orienter la reconstruction. Ainsi, nous montrons que l'information anatomique sur la nature des tissus permet d'estimer des faisceaux anatomiquement plausibles et de réduire les biais dans l'estimation de structures complexes de la matière blanche. Ensuite, nous utilisons des connaissances microstructurelles a priori dans la reconstruction, afin de permettre à la tractographie de suivre le mouvement des molécules d'eau non seulement le long des faisceaux, mais aussi dans des milieux microstructurels spécifiques. La tractographie peut ainsi distinguer différents faisceaux, réduire les erreurs de reconstruction et permettre l'étude de la microstructure le long de la matière blanche. Somme toute, nous montrons que l'utilisation de connaissances anatomiques et microstructurelles a priori, en tractographie, augmente l'exactitude des reconstructions de la matière blanche du cerveau.
Resumo:
Résumé : La texture dispose d’un bon potentiel discriminant qui complète celui des paramètres radiométriques dans le processus de classification d’image. L’indice Compact Texture Unit (CTU) multibande, récemment mis au point par Safia et He (2014), permet d’extraire la texture sur plusieurs bandes à la fois, donc de tirer parti d’un surcroît d’informations ignorées jusqu’ici dans les analyses texturales traditionnelles : l’interdépendance entre les bandes. Toutefois, ce nouvel outil n’a pas encore été testé sur des images multisources, usage qui peut se révéler d’un grand intérêt quand on considère par exemple toute la richesse texturale que le radar peut apporter en supplément à l’optique, par combinaison de données. Cette étude permet donc de compléter la validation initiée par Safia (2014) en appliquant le CTU sur un couple d’images optique-radar. L’analyse texturale de ce jeu de données a permis de générer une image en « texture couleur ». Ces bandes texturales créées sont à nouveau combinées avec les bandes initiales de l’optique, avant d’être intégrées dans un processus de classification de l’occupation du sol sous eCognition. Le même procédé de classification (mais sans CTU) est appliqué respectivement sur : la donnée Optique, puis le Radar, et enfin la combinaison Optique-Radar. Par ailleurs le CTU généré sur l’Optique uniquement (monosource) est comparé à celui dérivant du couple Optique-Radar (multisources). L’analyse du pouvoir séparateur de ces différentes bandes à partir d’histogrammes, ainsi que l’outil matrice de confusion, permet de confronter la performance de ces différents cas de figure et paramètres utilisés. Ces éléments de comparaison présentent le CTU, et notamment le CTU multisources, comme le critère le plus discriminant ; sa présence rajoute de la variabilité dans l’image permettant ainsi une segmentation plus nette, une classification à la fois plus détaillée et plus performante. En effet, la précision passe de 0.5 avec l’image Optique à 0.74 pour l’image CTU, alors que la confusion diminue en passant de 0.30 (dans l’Optique) à 0.02 (dans le CTU).