1 resultado para Musée van der Hoop (Amsterdam)
Resumo:
Cette thèse est constituée de deux parties : Dans la première partie nous étudions l’existence de solutions périodiques, de periode donnée, et à variations bornées, de l’équation de van der Pol en présence d’impulsions. Nous étudions, en premier, le cas où les impulsions ne dépendent pas de l’état. Ensuite, nous considèrons le cas où les impulsions dépendent de la moyenne de l’état et enfin, nous traitons le cas général où les impulsions dépendent de l’état. La méthode de résolution est basée sur le principe de point fixe de type contraction. Nous nous intéressons ensuite à l’étude d’un problème avec trois points aux limites, associé à certaines équations différentielles impulsives du second ordre. Nous obtenons un premier résultat d’existence de solutions en appliquant le théorème de point fixe de Schaefer. Un deuxième résultat est obtenu en utilisant le théorème de point fixe de Sadovskii. Pour le résultat d’unicité des solutions nous appliquons, enfin, un théorème de point fixe de type contraction. La deuxième partie est consacrée à la justification de la technique de moyennisation dans le cadre des équations différentielles floues. Les conditions sur les données que nous imposons sont moins restrictives que celles de la littérature.