1 resultado para INTERACTION CROSS-SECTIONS
Resumo:
Résumé: Ce mémoire de maîtrise est une étude des probabilités d’interactions (sections efficaces) des électrons de basse énergie avec une molécule d’intérêt biologique. Cette molécule est le tétrahydrofurane (THF) qui est un bon modèle de la molécule constituant la colonne vertébrale de l’ADN; le désoxyribose. Étant donné la grande quantité d’électrons secondaires libérés lors du passage des radiations à travers la matière biologique et sachant que ceux-ci déposent la majorité de l’énergie, l’étude de leurs interactions avec les molécules constituant l’ADN devient rapidement d’une grande importance. Les mesures de sections efficaces sont faites à l’aide d’un spectromètre à haute résolution de pertes d’énergie de l’électron. Les spectres de pertes d’énergie de l’électron obtenus de cet appareil permettent de calculer les valeurs de sections efficaces pour chaque vibration en fonction de l’énergie incidente de l’électron. L’article présenté dans ce mémoire traite de ces mesures et des résultats. En effet, il présente et explique en détail les conditions expérimentales, il décrit la méthode de déconvolution qui est utilisée pour obtenir les valeurs de sections efficaces et il présente et discute des 4 résonances observées dans la dépendance en énergie des sections efficaces. En effet, cette étude a permis de localiser en énergie 4 résonances et celles-ci ont toutes été confirmées par des recherches expérimentales et théoriques antérieures sur le sujet des collisions électrons lents-THF. En outre, jamais ces résonances n’avaient été observées simultanément dans une même étude et jamais la résonance trouvée à basse énergie n’avait été observée avec autant d’intensité que cette présente étude. Cette étude a donc permis de raffiner notre compréhension fondamentale des processus résonants impliqués lors de collisions d’électrons secondaires avec le THF. Les valeurs de sections efficaces sont, quant à elles, très prisées par les théoriciens et sont nécessaires pour les simulations Monte Carlo pour prédire, par exemple, le nombre d’ions formées après le passage des radiations. Ces valeurs pourront justement être utilisées dans les modèles de distribution et dépôt d’énergie au niveau nanoscopique dans les milieux biologiques et ceux-ci pourront éventuellement améliorer l’efficacité des modalités radiothérapeutiques.