2 resultados para Gender classification model
Resumo:
BACKGROUND: To plan and implement services to persons who inject drugs (PWID), knowing their number is essential. For the island of Montréal, Canada, the only estimate, of 11,700 PWID, was obtained in 1996 through a capture-recapture method. Thirteen years later, this study was undertaken to produce a new estimate. METHODS: PWID were defined as individuals aged 14-65 years, having injected recently and living on the island of Montréal. The study period was 07/01/2009 to 06/30/2010. An estimate was produced using a six-source capture-recapture log-linear regression method. The data sources were two epidemiological studies and four drug dependence treatment centres. Model selection was conducted in two steps, the first focusing on interactions between sources and the second, on age group and gender as covariates and as modulators of interactions. RESULTS: A total of 1480 PWID were identified in the six capture sources. They corresponded to 1132 different individuals. Based on the best-fitting model, which included age group and sex as covariates and six two-source interactions (some modulated by age), the estimated population was 3910 PWID (95% confidence intervals (CI): 3180-4900) which represents a prevalence of 2.8 (95% CI: 2.3-3.5) PWID per 1000 persons aged 14-65 years. CONCLUSIONS: The 2009-2010 estimate represents a two-third reduction compared to the one for 1996. The multisource capture-recapture method is useful to produce estimates of the size of the PWID population. It is of particular interest when conducted at regular intervals thus allowing for close monitoring of the injection phenomenon.
Resumo:
A flexible and multipurpose bio-inspired hierarchical model for analyzing musical timbre is presented in this paper. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. The model was evaluated in three applications. First, it was used to simulate subjective data from two roughness experiments. Second, it was used for musical instrument classification using the k-NN algorithm and a Bayesian network. Third, it was applied to find the features that characterize sounds whose timbres were labeled in an audiovisual experiment. The successful application of the proposed model in these diverse tasks revealed its potential in capturing timbral information.