2 resultados para Cytosolic Na


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : La variation de la [Ca2+] intracellulaire participe à nombreux de processus biologiques. Les cellules eucaryotes expriment à la membrane plasmique une variété de canaux par lesquelles le calcium peut entrer. Dans les cellules non excitables, deux mécanismes principaux permettent l'entrée calcique; l'entrée capacitative de Ca2+ via Orai1 (SOCE) et l'entrée calcique activé par un récepteur (ROCE). Plusieurs protéines clés sont impliquées dans la régulation de ces voies d'entrée calcique, ainsi que dans l'homéostasie calcique. TRPC6 est un canal calcique impliquée dans l'entrée calcique dans les cellules à la suite dâune stimulation dâun récepteur hormonal. TRPC6 transloque à la membrane cellulaire et il y demeure jusqu'à ce que le stimulus soit retiré. Les mécanismes qui régulent le trafic et l'activation de TRPC6 sont cependant encore peu connus. Des découvertes récentes ont démontré qu'il y a un rôle potentiel de Rho kinase dans l'activité de TRPC6. Rho kinase est activée par la petite protéine G RhoA qui peut être activée par les protéines G hétérotrimériques Gα12 et Gα13. En plus de Gα12 et Gα13, les protéines de désensibilisation des GPCR β -arrestin 1 et / ou β-arrestin 2 peuvent aussi activer RhoA. Le but de notre étude est d'examiner la participation des protéines Gα12/13 et β-arrestin 1/ β-arrestin 2 dans l'activation de TRPC6 et de la protéine Orai1. Nous avons utilisé des ARN interférant (siRNA) spécifiques pour induire une réduction de l'expression de Gα12/13 ou β-arrestin 1/β-arrestin 2. La conséquence sur lâentrée de Ca2+ dans les cellules a été ensuite déterminée par imagerie calcique en temps réel suite à une stimulation par la vasopressine (AVP), thapsigargin ou carbachol. Nous avons donc identifié que dans des cellules A7r5, une lignée cellulaire de musculaires lisses vasculaires où le canal TRPC6 exprimé de manière endogène, la diminution de lâexpression des protéines Gα12 ou Gα13 ne semble pas modifier lâentrée Ca2+ induit par lâAVP par rapport aux cellules témoins. D'autre part, la diminution de lâexpression β-arrestin 1 ou β-arrestin 2 dans des cellules HEK 293 ainsi que des cellules HEK 293 exprimant de façon stable TRPC6 (cellules T6.11) ont augmenté lâentrée de Ca2+ induite par thapsigargin, un activateur pharmacologique de SOCE. Des études de co-immunoprécipitation démontrent une interaction entre la β-arrestin 1 et STIM1, alors qu'aucune interaction n'a été observée entre les β-arrestin 1 et Orai1. Nous avons de plus montré à l'aide d'analyse en microscopie confocale que la diminution de lâexpression β-arrestin 1 ou β-arrestin 2 nâinfluence pas la quantité dâOrai1 à la périphérie cellulaire. Cependant, des résultats préliminaires indiquent que la diminution de lâexpression β-arrestin 1 ou β-arrestin 2 augmente la quantité de STIM1-YFP dans l'espace intracellulaire et diminue sa quantité à la périphérie cellulaire. En conclusion, nous avons montré que les β-arrestin 1 ou β-arrestin 2 sont impliquées dans l'entrée capacitative de Ca2+ (SOCE) et contrôlent la quantité de STIM1 dans le réticulum endoplasmique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : La formation de métastases sâinscrit comme la finalité dâun processus darwinien dans lequel les cellules tumorales subissent des altérations génétiques et épigénétiques dans lâunique but de préserver un avantage prolifératif. Lâenvironnement hypoxique, caractéristique des tumeurs solides, se révèle comme une pression de sélection et un facteur déterminant dans la progression tumorale. Face à lâhypoxie, une des adaptations majeures des cellules tumorales est le déséquilibre du pH cellulaire qui mène à la formation de métastases et à la résistance à la chimiothérapie. Cette thèse met en lumière de nouveaux liens moléculaires entre lâhypoxie et la régulation du pH dans des contextes dâinvasion cellulaire et de chimiorésistance. Les échangeurs dâions NHE1 et NHE6 sont au cÅur de ces études où de nouveaux rôles dans la progression du cancer leur ont été attribués. Premièrement, nous avons observé lâinfluence de lâhypoxie sur la régulation de NHE1 par p90RSK et les conséquences fonctionnelles de cette interaction dans lâinvasion cellulaire par les invadopodes. En conditions hypoxiques, NHE1 est activé par p90RSK résultant en une acidification extracellulaire. En modifiant le pH, NHE1 stimule la formation des invadopodes et la dégradation de la matrice extracellulaire. Ainsi, la phosphorylation de NHE1 par p90RSK en hypoxie apparaît comme un biomarqueur potentiel des cancers métastatiques. Peu étudié, le pH endosomal peut intervenir dans la chimiorésistance mais les mécanismes sont inconnus. Nous avons développé une méthode pour mesurer précisément le pH endosomal par microscopie. Ceci a permis dâilluminer un nouveau mécanisme de résistance induit par lâhypoxie et mettant en vedette lâéchangeur NHE6. Lâhypoxie favorise lâinteraction de NHE6 avec RACK1 à la membrane plasmique empêchant la localisation endosomale de lâéchangeur. Cette interaction mène à la séquestration de la doxorubicine dans des endosomes sur-acidifiés. Ces travaux mettent en évidence pour la première fois le rôle du pH endosomal et lâéchangeur NHE6 comme des éléments centraux de la chimiorésistance induite par lâhypoxie. Cette thèse renforce donc lâidée voulant que les interactions entre les cellules tumorales et le microenvironnement hypoxique sont le « talon dâAchille » du cancer et la régulation du pH cellulaire est primordiale dans lâadaptation des cellules à lâhypoxie et lâinstauration du phénotype malin du cancer. La découverte de nouveaux rôles pro-tumoraux pour NHE1 et NHE6 les placent à lâavant-plan pour le développement de stratégies thérapeutiques orientées contre la formation de métastases et la chimiorésistance.