2 resultados para Coulomb explosions
Resumo:
Un moyen permettant d'identifier expérimentalement les phases du gaz d'électrons bidimensionnel de la bicouche de graphène en empilement bernal au remplissage $\nu = 3$ est recherché lorsque le biais électrique entre les couches est varié. À ce remplissage, si on se concentre aux basses énergies, il est possible de ne s'intéresser qu'aux deux niveaux de Landau composant le niveau $N=0$ qui sont de même spin et de même vallée, mais d'orbitale différente. Puisque la texture du pseudospin orbital de ce système change selon la phase, il est attendu que le couplage avec le champ électrique de la lumière devrait changer. La dispersion des modes collectifs de chaque phase est calculée dans l'approximation GRPA (generalized random-phase approximation) dans le domaine en biais où chacune domine respectivement. L'absorption optique pour des polarisations linéaires en direction x et en direction y ainsi que pour des polarisations circulaires gauche et droite est calculée. La rotation de Faraday et l'effet Kerr sont également calculés. Des différences entre les phases sont remarquées au niveaux de la fréquence des photons qui sont absorbés, de l'amplitude de l'absorption et de la rotation de la polarisation ainsi que la sensibilité à certains types de polarisation. L'effet des modes collectifs dans les phases considérées est cependant moindre que celui qui est prédit dans un calcul qui ne tient pas compte de l'interaction de Coulomb.
Resumo:
Depuis le lancement du premier satellite Spoutnik 1 en 1957, l’environnement spatial est de plus en plus utilisé et le nombre de débris orbitaux se multiplie naturellement, soit par des explosions, des collisions ou tout simplement par les opérations normales des satellites. Au-delà d'un certain seuil, la densité des débris orbitaux risque de créer une réaction en chaîne incontrôlée : l’effet Kessler. L’élimination des débris orbitaux en basse altitude permettrait de limiter cette réaction et ainsi de préserver l’environnement spatial afin de pouvoir l’utiliser de façon sécuritaire. L’élimination des débris orbitaux est une opération complexe et coûteuse. Elle consiste à déplacer des objets spatiaux inactifs vers une orbite basse pour mener à leur désintégration dans la basse atmosphère terrestre. En utilisant les perturbations orbitales, il est possible de réduire le coût du carburant requis pour effectuer les manœuvres orbitales nécessaires à l’élimination de ces débris. L'objectif principal de cette étude consiste à développer une procédure et une stratégie de commande autonome afin de modifier l'orbite des satellites non opérationnels (débris) pour mener à leur désintégration naturelle tout en optimisant les facteurs carburant et temps. Pour ce faire, un modèle d’atmosphère basé sur le modèle de Jacchia (1977) est développé. Un modèle de la dynamique du satellite inclut aussi les perturbations principales, soit : traînée atmosphérique, non sphéricité et distribution non uniforme de la masse de la Terre. Ces modèles ainsi qu'un algorithme de commande optimale pour un propulseur électrique sont développés et le tout est validé par simulations numériques sur Matlab/Simulink. Au terme de cette étude, les conditions optimales dans lesquelles il faut laisser un débris afin qu'il se désintègre dans la basse atmosphère de la Terre en quelques semaines seront données (type d'orbite : altitude, inclinaison, etc.) ainsi que le coût en carburant pour une telle mission. Cette étude permettra de prouver qu'il est possible de réaliser des missions d'élimination des débris orbitaux tout en réduisant les coûts associés aux manœuvres orbitales par l'utilisation des perturbations naturelles de l'environnement.