1 resultado para Caça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Au Canada, les avalanches constituent le géorisque le plus dangereux en période hivernale. On enregistre annuellement d’importants coûts économiques et sociaux associés aux impacts de ce phénomène naturel. Par exemple, la fermeture de routes en cas de risque d’avalanche est estimée à 5 millions de dollars (Jamieson et Stethem, 2002). La prévision des avalanches est, de nos jours, la meilleure méthode afin d’éviter ces coûts. Au Canada, cela s’effectue de façon ponctuelle à l’aide de méthodes manuelles tel que le test de compression (CAA, 2014). Les modèles de simulation du couvert neigeux permettent d’étendre les prévisions à l’ensemble d’une région et ainsi, atteindre certains lieux difficilement accessibles pour l’homme. On tente actuellement d’adapter le modèle SNOWPACK aux conditions canadiennes et plusieurs études ont eu pour but d’améliorer les simulations produites par celui-ci. Cette étude vise donc également l’amélioration des simulations par l’intégration des paramètres de végétation. L’objectif de l’étude est de paramétrer, pour la première fois, le module de végétation de SNOWPACK avec les données récoltées dans la réserve faunique des Chic-Chocs. Nous pourrons ainsi évaluer l’impact de la végétation sur la modélisation du couvert nival. Nous avons donc, lors de sorties de terrain, recueillis les données de neige et de végétation au niveau de quatre sites d’étude. Nous avons par la suite réalisé les simulations avec SNOWPACK et comparer les résultats des simulations avec et sans végétation aux données de terrain. L’étude nous révèle que le modèle diminue la quantité de neige au sol ainsi que la densité du manteau neigeux en présence de végétation. De plus nous avons pu constater que l’inclusion du module de végétation permet d’obtenir des données qui se rapprochent davantage de ce qui a été observé sur le terrain.