5 resultados para Biomasse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’industrie des biocarburants de deuxième génération utilise, entre autre, la biomasse lignocellulosique issue de résidus forestiers et agricoles et celle issue de cultures énergétiques. Le sorgho sucré [Sorghum bicolor (L.) Moench] fait partie de ces cultures énergétiques. L’intérêt croissant de l’industrie agroalimentaire et des biocarburants pour cette plante est dû à sa haute teneur en sucres (jusqu’à 60% en masse sèche). En plus de se développer rapidement (en 5-6 mois), le sorgho sucré a l’avantage de pouvoir croître sur des sols pauvres en nutriments et dans des conditions de faibles apports en eau, ce qui en fait une matière première intéressante pour l’industrie, notamment pour la production de bioéthanol. Le concept de bioraffinerie alliant la production de biocarburants à celle de bioénergies ou de bioproduits est de plus en plus étudié afin de valoriser la production des biocarburants. Dans le contexte d’une bioraffinerie exploitant la biomasse lignocellulosique, il est nécessaire de s’intéresser aux différents métabolites extractibles en plus des macromolécules permettant la fabrication de biocarburants et de biocommodités. Ceux-ci pouvant avoir une haute valeur ajoutée et intéresser l’industrie pharmaceutique ou cosmétique par exemple. Les techniques classiques pour extraire ces métabolites sont notamment l’extraction au Soxhlet et par macération ou percolation, qui sont longues et coûteuses en énergie. Ce projet s’intéresse donc à une méthode d’extraction des métabolites primaires et secondaires du sorgho sucré, moins coûteuse et plus courte, permettant de valoriser économiquement l’exploitation industrielle du de cette culture énergétique. Ce travail au sein de la CRIEC-B a porté spécifiquement sur l’utilisation d’une émulsion ultrasonique eau/carbonate de diméthyle permettant de diminuer les temps d’opération (passant à moins d’une heure au lieu de plusieurs heures) et les quantités de solvants mis en jeu dans le procédé d’extraction. Cette émulsion extractive permet ainsi de solubiliser à la fois les métabolites hydrophiles et ceux hydrophobes. De plus, l’impact environnemental est limité par l’utilisation de solvants respectueux de l’environnement (80 % d’eau et 20 % de carbonate de diméthyle). L’utilisation de deux systèmes d’extraction a été étudiée. L’un consiste en la recirculation de l’émulsion, en continu, au travers du lit de biomasse; le deuxième permet la mise en contact de la biomasse et des solvants avec la sonde à ultrasons, créant l’émulsion et favorisant la sonolyse de la biomasse. Ainsi, en réacteur « batch » avec recirculation de l’émulsion eau/DMC, à 370 mL.min[indice supérieur -1], au sein du lit de biomasse, l’extraction est de 37,91 % en 5 minutes, ce qui est supérieur à la méthode ASTM D1105-96 (34,01 % en 11h). De plus, en réacteur « batch – piston », où la biomasse est en contact direct avec les ultrasons et l’émulsion eau/DMC, les meilleurs rendements sont de 35,39 % en 17,5 minutes, avec 15 psig de pression et 70 % d’amplitude des ultrasons. Des tests effectués sur des particules de sorgho grossières ont donné des résultats similaires avec 30,23 % d’extraits en réacteur « batch » avec recirculation de l’émulsion (5 min, 370 mL.min[indice supérieur -1]) et 34,66 % avec le réacteur « batch-piston » (30 psig, 30 minutes, 95 % d’amplitude).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La présence des contaminants organiques dans l’environnement est une problématique aux enjeux aussi bien scientifiques que politiques. Le caractère diffus et continu (différentes et multiples sources) de cette contamination ne permet pas à ces molécules biologiquement actives d’être soumises à une législation. Ces molécules, pouvant être très récalcitrantes, ne sont pas systématiquement éliminées par les systèmes de traitement des eaux conventionnels. Actuellement, de nouveaux procédés biotechnologiques basés sur des enzymes extracellulaires (e.g. Laccase) ou des champignons lignivores permettent l’élimination des composés les plus récalcitrants. Notre compréhension des mécanismes impliqués dans cette élimination reste incomplète. En effet, la biosorption et l’activité des enzymes extracellulaire sont les mécanismes les plus souvent mis en avant pour expliquer l’efficacité des procédés d’élimination fongique, mais ne sont pas capables d’expliquer les performances obtenues pour certains composés pharmaceutiques. Ces lacunes dans nos connaissances sur les mécanismes responsables de l’élimination fongique des contaminants organiques sont un frein à la pleine exploitation de ces procédés de traitement. De plus, il est forcé d’admettre qu’un grand nombre de travaux portant sur l’élimination fongique de contaminants organiques ont été réalisés dans des conditions de hautes concentrations, qui peuvent être peu représentatives des matrices environnementales. Ainsi, les effets observés à plus forte concentration peuvent etre le résultat dû au stress de l’organisme au contact des contaminants (toxicités). Cette thèse adresse deux questions ; ainsi quelle est l’influence des concentrations traces sur de tels procédés ? Et comment expliquer l’élimination de certains contaminants organiques lors des traitements fongiques ? Afin d’apporter des éléments de réponse sur les mécanismes mis en jeux lors de l’élimination fongique, les travaux présentés ici ont été réalisés sur un modèle de champignon lignivore connu pour ses propriétés en bioremediation. Dans un premier temps, un développement analytique permettant la quantification d’une sélection de contaminants organiques à l’état de traces a été réalisé. Cette méthode a permis d’effectuer des analyses de ces molécules à partir d’un seul échantillon environnemental de faible biomasse et à partir d’une seule injection instrumentale. Les résultats de cette thèse démontrent que l’élimination fongique de contaminants organiques résulte de mécanismes plus complexes que précédemment décrits. Notamment, la dégradation est fortement dépendante d’une étape initiale d’internalisation du contaminant par l’organisme ciblé et de la dégradation intracellulaire. Les mécanismes impliqués peuvent ainsi donnés lieux à des réactions de conjugaison intracellulaire des molecules (glucuronide, glutathione). Les résultats démontrent également que ces procédés d’élimination fongique sont efficaces sur une large gamme de concentration en contaminants organiques. Cependant, les faibles concentrations modifient les propriétés physico-chimiques et biologiques de l’organisme testé (i.e. un changement de la morphologie et du profil de la production enzymatique). La réponse biologique n’étant pas directement proportionnelle a l’exposition en contaminant. Cette étude a permis d’accroitre notre compréhension des mécanismes impliqués dans la dégradation fongique de contaminants organiques. Ceci ouvre la voie à de nouvelles études portant sur les interactions entre processus intra — et extracellulaires. Cette thèse contribue également à l’amélioration des connaissances en offrant des outils de compréhension nécessaire à l’optimisation et au développement du potentiel de ces procédés biotechnologiques (ciblage et role des enzymes réeellement impliquées dans les réactions de biocatalyse).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Au Canada, près de 80% des émissions totales, soit 692 Mt eq. CO[indice inférieur 2], des gaz à effet de serre (GES) sont produits par les émissions de dioxyde de carbone (CO[indice inférieur 2]) provenant de l’utilisation de matières fossiles non renouvelables. Après la Conférence des Nations Unies sur les changements climatiques, COP21 (Paris, France), plusieurs pays ont pour objectif de réduire leurs émissions de GES. Dans cette optique, les microalgues pourraient être utilisées pour capter le CO[indice inférieur 2] industriel et le transformer en biomasse composée principalement de lipides, de glucides et de protéines. De plus, la culture des microalgues n’utilise pas de terre arable contrairement à plusieurs plantes oléagineuses destinées à la production de biocarburants. Bien que les microalgues puissent être transformées en plusieurs biocarburants tels le bioéthanol (notamment par fermentation des glucides) ou le biométhane (par digestion anaérobie), la transformation des lipides en biodiesel pourrait permettre de réduire la consommation de diesel produit à partir de pétrole. Cependant, les coûts reliés à la production de biodiesel à partir de microalgues demeurent élevés pour une commercialisation à court terme en partie parce que les microalgues sont cultivées en phase aqueuse contrairement à plusieurs plantes oléagineuses, ce qui augmente le coût de récolte de la biomasse et de l’extraction des lipides. Malgré le fait que plusieurs techniques de récupération des lipides des microalgues n’utilisant pas de solvant organique sont mentionnées dans la littérature scientifique, la plupart des méthodes testées en laboratoire utilisent généralement des solvants organiques. Les lipides extraits peuvent être transestérifiés en biodiesel en présence d’un alcool tel que le méthanol et d’un catalyseur (catalyses homogène ou hétérogène). Pour la commercialisation du biodiesel à partir de microalgues, le respect des normes ASTM en vigueur est un point essentiel. Lors des essais en laboratoire, il a été démontré que l’extraction des lipides en phase aqueuse était possible afin d’obtenir un rendement maximal en lipides de 36% (m/m, base sèche) en utilisant un prétraitement consistant en une ébullition de la phase aqueuse contenant les microalgues et une extraction par des solvants organiques. Pour l’estérification, en utilisant une résine échangeuse de cations (Amberlyst-15), une conversion des acides gras libres de 84% a été obtenue à partir des lipides de la microalgue Chlorella protothecoïdes dans les conditions suivantes : température : 120°C, pression autogène, temps de réaction : 60 min, ratio méthanol/lipides: 0.57 mL/g et 2.5% (m/m) Amberlyst-15 par rapport aux lipides. En utilisant ces conditions avec une catalyse homogène (acide sulfurique) et une seconde étape alcaline avec de l’hydroxyde de potassium (température : 60°C ; temps de réaction : 22.2 min; ratio catalyseur microalgue : 2.48% (m/m); ratio méthanol par rapport aux lipides des microalgues : 31.4%), un rendement en esters méthyliques d’acides gras (EMAG) de 33% (g EMAG/g lipides) a été obtenu à partir des lipides de la microalgue Scenedesmus Obliquus. Les résultats démontrent que du biodiesel peut être produit à partir de microalgues. Cependant, basé sur les présents résultats, il sera necessaire de mener d’autre recherche pour prouver que les microalgues sont une matière première d’avenir pour la production de biodiesel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'industrie du ciment est l'une des principales sources d'émission de dioxyde de carbone. L'industrie mondiale du ciment contribue à environ 7% des émissions de gaz à effet de serre dans l'atmosphère. Afin d'aborder les effets environnementaux associés à la fabrication de ciment exploitant en permanence les ressources naturelles, il est nécessaire de développer des liants alternatifs pour fabriquer du béton durable. Ainsi, de nombreux sous-produits industriels ont été utilisés pour remplacer partiellement le ciment dans le béton afin de générer plus d'économie et de durabilité. La performance d'un additif de ciment est dans la cinétique d'hydratation et de la synergie entre les additions et de ciment Portland. Dans ce projet, deux sous-produits industriels sont étudiés comme des matériaux cimentaires alternatifs: le résidu de silice amorphe (RSA) et les cendres des boues de désencrage. Le RSA est un sous-produit de la production de magnésium provenant de l'Alliance Magnésium des villes d'Asbestos et Thedford Mines, et les cendres des boues de désencrage est un sous-produit de la combustion des boues de désencrage, l'écorce et les résidus de bois dans le système à lit fluidisé de l'usine de Brompton située près de Sherbrooke, Québec, Canada. Récemment, les cendres des boues de désencrage ont été utilisées comme des matériaux cimentaires alternatifs. L'utilisation de ces cendres comme matériau cimentaire dans la fabrication du béton conduit à réduire la qualité des bétons. Ces problèmes sont causés par des produits d'hydratation perturbateurs des cendres volantes de la biomasse quand ces cendres sont partiellement mélangées avec du ciment dans la fabrication du béton. Le processus de pré-mouillage de la cendre de boue de désencrage avant la fabrication du béton réduit les produits d'hydratation perturbateurs et par conséquent les propriétés mécaniques du béton sont améliorées. Les approches pour étudier la cendre de boue de désencrage dans ce projet sont : 1) caractérisation de cette cendre volante régulière et pré-humidifiée, 2) l'étude de la performance du mortier et du béton incorporant cette cendre volante régulière et pré-humidifiée. Le RSA est un nouveau sous-produit industriel. La haute teneur en silice amorphe en RSA est un excellent potentiel en tant que matériau cimentaire dans le béton. Dans ce projet, l'évaluation des RSA comme matériaux cimentaires alternatifs compose trois étapes. Tout d'abord, la caractérisation par la détermination des propriétés minéralogiques, physiques et chimiques des RSA, ensuite, l'optimisation du taux de remplacement du ciment par le RSA dans le mortier, et enfin l'évaluation du RSA en remplacement partiel du ciment dans différents types de béton dans le système binaire et ternaire. Cette étude a révélé que le béton de haute performance (BHP) incorporant le RSA a montré des propriétés mécaniques et la durabilité, similaire du contrôle. Le RSA a amélioré les propriétés des mécaniques et la durabilité du béton ordinaire (BO). Le béton autoplaçant (BAP) incorporant le RSA est stable, homogène et a montré de bonnes propriétés mécaniques et la durabilité. Le RSA avait une bonne synergie en combinaison de liant ternaire avec d'autres matériaux cimentaires supplémentaires. Cette étude a montré que le RSA peut être utilisé comme nouveaux matériaux cimentaires dans le béton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les concentrations de métaux lourds retrouvées dans les sols augmentent considérablement depuis la révolution industrielle et s’accumulent quotidiennement dans la biosphère. Ces composés métalliques persisteront pendant plusieurs années au niveau des différents écosystèmes affectés et voyageront dans les chaînes alimentaires par bioaccumulation. Les activités humaines, telle que l’industrie minière contribuent activement à cette problématique environnementale. En effet, l’excavation minière perturbe la roche-mère et favorise l’oxydation des métaux lourds sulfurés qui, lentement, produiront de l’acide sulfurique. Cette acidification peut mobiliser les éléments métalliques stables en condition neutre ou alcaline. Ces phénomènes induisent la formation du drainage minier acide (DMA) qui peut contaminer les cours d’eau ou les nappes phréatiques à proximité. Plusieurs mines sont situées en Abitibi-Témiscamingue en raison de l’abondance de divers minerais dans la roche mère tels que l’or. Une importante quantité de déchets industriels est produite lors de l’excavation du minerai, dont les résidus miniers entreposés dans des bassins de rétention extérieurs. Ces bassins prennent de l’expansion quotidiennement autour du site minier substituant la place de la végétation saine et des territoires. Une mise en végétation des sites miniers du Québec est exigée depuis 1995 afin de redonner une apparence naturelle aux sites et limiter le phénomène d’érosion. Depuis 2013, un plan de réaménagement et de restauration des sites exploités est obligatoire selon la loi sur les mines. Ces bassins seront donc ciblés pour effectuer des essais de revégétalisation par l’entremise de plantes actinorhiziennes. Les plantes actinorhiziennes sont des végétaux robustes pouvant coloniser nombreux habitats perturbés et hostiles. L’aulne est une plante actinorhizienne pouvant établir une relation symbiotique avec l’actinobactérie fixatrice d’azote du genre Frankia. La symbiose actinorhizienne est une interaction équitablement profitable entre la plante et la bactérie. Cette symbiose repose sur la capacité de la bactérie à transformer, au niveau des nodules, l’azote atmosphérique en ammonium assimilable grâce à une enzyme spécifique, la nitrogénase. Lorsque la symbiose est bien établie, elle donnera un avantage significatif aux plantes pour leur développement et leur croissance, et ce, même dans un substrat pauvre en nutriments ou contaminé. En effet, la symbiose actinorhizienne permet d’améliorer la structure physicochimique d’un sol et de l’enrichir en azote grâce à la fixation de l’azote atmosphérique. Dans la région de l’Abitibi-Témiscamingue, la mine Doyon est une mine d’or qui détient des sols acidogènes contenant des traces non négligeables de métaux lourds. Ce projet de recherche en microbiologie environnementale avait comme objectif principal d’évaluer la capacité des aulnes rugueux et des aulnes crispés à coloniser des résidus miniers acidogènes aurifères (concentrations différentes de 0 %, 35 %, 65 % et 100 %) avec ou sans l’aide de Frankia. La dispersion des contaminants par les feuilles a aussi été étudiée afin d’évaluer le risque environnemental de l’utilisation des aulnes sur le terrain à des fins de revégétalisation. Les objectifs préliminaires avaient comme but d’évaluer la résistance, de manière individuelle, de la souche ACN10a du genre Frankia (par extrait aqueux) puis des espèces d’aulne aux résidus miniers non stérilisés. Par le fait même, la microflore des résidus miniers a été étudiée dans le but d’isoler des espèces symbiotiques d’endophytes écoadaptées aux conditions arides du site minier Doyon. Concernant les objectifs préliminaires, les résultats ont démontré que la souche ACN10a résiste bien jusqu’à 35 % d’extrait aqueux de résidus miniers de la mine Doyon. Pour les concentrations supérieures à 50 %, Frankia (souche ACN10a) a démontré une respiration cellulaire et des concentrations protéiques décroissantes en raison de la présence d’éléments toxiques biodisponibles dans l’extrait aqueux. Par ailleurs, les aulnes rugueux et crispés ont démontré une tolérance jusqu’à la concentration de 35 % de résidus miniers non stérilisés sans la présence de Frankia. Par la suite, les résultats d’isolement n’ont pas démontré la capacité des aulnes à recruter des bactéries symbiotiques à partir des résidus miniers de la mine Doyon. Concernant l’objectif principal, les résultats ont démontré que l’aulne rugueux résiste mieux que l’aulne crispé jusqu’aux concentrations de 35 % de résidus miniers lorsqu’inoculés en manifestant une meilleure biomasse sèche totale, une plus grande concentration de chlorophylle dans les feuilles et un plus grand nombre spécifique de nodules. L’établissement symbiotique a été affecté par la présence des résidus miniers acidogène révélant que le nombre de site d’infection racinaire diminuait en fonction des concentrations de résidus miniers croissantes (0 %, 35 %, 65 % et 100 %). Ensuite, une analyse des éléments chimiques des feuilles a démontré que le transfert des métaux lourds des résidus miniers vers les feuilles était minime. Les plantes révélant de hautes teneurs en métaux lourds dans leurs feuilles ont développé par le fait même, une faible biomasse aérienne limitant ainsi la dispersion de contaminants lors de la perte des feuilles à l’automne. Le modèle expérimental aulne-Frankia possédait un seuil de tolérance visible à la concentration de 35 % de résidus miniers acidogènes aurifères de la mine Doyon. De plus, la présence de la symbiose actinorhizienne a modulé la distribution de certains éléments chimiques dans les feuilles en comparaison avec les aulnes non-inoculés (molybdène, nickel). Puis, une similarité a été notée dans la composition chimique des feuilles d’aulnes inoculés s’étant développés dans 0 % (témoin positif) et 35 % de résidus miniers.