2 resultados para water release curve

em Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La construction des biosystèmes d’oxydation passive du méthane (BOPM) est une option économique et durable pour réduire les émissions de méthane des sites d’enfouissement de déchets et des effets subséquents du réchauffement climatique. Les BOPM sont constitués de deux couches principales: la couche d'oxydation du méthane (MOL) et la couche de distribution du gaz (GDL). L'oxydation du méthane se produit dans la MOL par les réactions biochimiques des bactéries méthanotrophes, et la GDL est construite sous la MOL pour intercepter et distribuer les émissions fugitives de biogaz à la base de la MOL. Fondamentalement, l'efficacité d'un BOPM est définie en fonction de l'efficacité d'oxydation du méthane dans la MOL. Par conséquent, il est indispensable de fournir des conditions adéquates pour les activités bactériennes des méthanotrophes. En plus des paramètres environnementaux, l'intensité et la distribution du biogaz influencent l'efficacité des BOPM, et ils peuvent rendre le matériau de la MOL - avec une grande capacité d'accueillir les activités bactériennes - inutilisables en termes d'oxydation du méthane sur place. L'effet de barrière capillaire le long de l'interface entre la GDL et la MOL peut provoquer des émissions localisées de méthane, due à la restriction ou la distribution non uniforme de l’écoulement ascendant du biogaz à la base de la MOL. L'objectif principal de cette étude est d'incorporer le comportement hydraulique non saturé des BOPM dans la conception des BOPM, afin d’assurer la facilité et la distribution adéquates de l'écoulement du biogaz à la base de la MOL. Les fonctions de perméabilité à l'air des matériaux utilisés pour construire la MOL des BOPM expérimentaux au site d’enfouissement des déchets de St Nicéphore (Québec, Canada), ainsi que celles d'autres de la littérature technique, ont été étudiés pour évaluer le comportement d'écoulement non saturé du gaz dans les matériaux et pour identifier le seuil de migration sans restriction du gaz. Ce dernier seuil a été introduit en tant que un paramètre de conception avec lequel le critère de conception recommandé ici, c’est à dire la longueur de la migration sans restriction de gaz (LMSG), a été défini. La LMSG est considérée comme la longueur le long de l'interface entre la GDL et la MOL où le biogaz peut migrer à travers la MOL sans restriction. En réalisant des simulations numériques avec SEEP/W, les effets de la pente de l'interface, des paramètres définissant la courbe de rétention d'eau, de la fonction de la conductivité hydraulique du matériau de la MOL sur la valeur de la LMSG (représentant la facilité d'écoulement du biogaz à l'interface) et de la distribution de l'humidité (et par conséquent celle du biogaz) ont été évalués. Selon les résultats des simulations, la conductivité hydraulique saturée et la distribution des tailles de pores du matériau de la MOL sont les paramètres les plus importants sur la distribution de l'humidité le long de l'interface. Ce dernier paramètre influe également sur la valeur du degré de saturation et donc la facilité du biogaz à la base de la MOL. La densité sèche du matériau de MOL est un autre paramètre qui contrôle la facilité d'écoulement ascendant du biogaz. Les limitations principales de la présente étude sont associées au nombre de matériaux de MOL testés et à l'incapacité de SEEP/W de considérer l'évapotranspiration. Toutefois, compte tenu des hypothèses raisonnables dans les simulations et en utilisant les données de la littérature, on a essayé de réduire ces limitations. En utilisant les résultats des expériences et des simulations numériques, des étapes et des considérations de conception pour la sélection du matériau de MOL et de la pente d'interface ont été proposées. En effet,le comportement hydraulique non saturé des matériaux serait intégré dans les nécessités de conception pour un BOPM efficace, de sorte que la capacité maximale possible d'oxydation du méthane du matériau de la MOL soit exploitée.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Les ions hydronium (H3O + ) sont formés, à temps courts, dans les grappes ou le long des trajectoires de la radiolyse de l'eau par des rayonnements ionisants à faible transfert d’énergie linéaire (TEL) ou à TEL élevé. Cette formation in situ de H3O + rend la région des grappes/trajectoires du rayonnement temporairement plus acide que le milieu environnant. Bien que des preuves expérimentales de l’acidité d’une grappe aient déjà été signalées, il n'y a que des informations fragmentaires quant à son ampleur et sa dépendance en temps. Dans ce travail, nous déterminons les concentrations en H3O + et les valeurs de pH correspondantes en fonction du temps à partir des rendements de H3O + calculés à l’aide de simulations Monte Carlo de la chimie intervenant dans les trajectoires. Quatre ions incidents de différents TEL ont été sélectionnés et deux modèles de grappe/trajectoire ont été utilisés : 1) un modèle de grappe isolée "sphérique" (faible TEL) et 2) un modèle de trajectoire "cylindrique" (TEL élevé). Dans tous les cas étudiés, un effet de pH acide brusque transitoire, que nous appelons un effet de "pic acide", est observé immédiatement après l’irradiation. Cet effet ne semble pas avoir été exploré dans l'eau ou un milieu cellulaire soumis à un rayonnement ionisant, en particulier à haut TEL. À cet égard, ce travail soulève des questions sur les implications possibles de cet effet en radiobiologie, dont certaines sont évoquées brièvement. Nos calculs ont ensuite été étendus à l’étude de l'influence de la température, de 25 à 350 °C, sur la formation in situ d’ions H3O + et l’effet de pic acide qui intervient à temps courts lors de la radiolyse de l’eau à faible TEL. Les résultats montrent une augmentation marquée de la réponse de pic acide à hautes températures. Comme de nombreux processus intervenant dans le cœur d’un réacteur nucléaire refroidi à l'eau dépendent de façon critique du pH, la question ici est de savoir si ces fortes variations d’acidité, même si elles sont hautement localisées et transitoires, contribuent à la corrosion et l’endommagement des matériaux.