6 resultados para génome

em Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'identité et la réactivité cellulaires sont établies, maintenues et modulées grâce à l'orchestration de programmes transcriptionnels spécifiques. Les éléments régulateurs, des régions particulières de la chromatine responsables de l'activation ou de la répression des gènes, sont au coeur de cette opération. Ces dernières années, de nombreuses études ont révélé le rôle central des « enhancers » dans ce processus. En effet, des centaines de milliers « enhancers » seraient éparpillés dans le génome humain, majoritairement dans sa portion non-codante, et contrairement au promoteur, leur activation varierait selon le type ou l'état cellulaire ou en réponse à une stimulation physiologique, pathologique ou environnementale. Les « enhancers » sont, en quelque sorte, des carrefours où transitent une multitude de protéines régulées par les signaux intra- et extra-cellulaires et un dialogue s'établit entre ces diverses protéines et la chromatine. L'identification des « enhancers ainsi qu'une compréhension de leur mode de fonctionnement sont donc cruciales, tant au plan fondamental que clinique. La chromatine joue un rôle indéniable dans l'activité des éléments régulateurs, tant par sa composition que par sa structure, en régulant, entre autres, l'accessibilité de l'ADN. En effet, l'ADN des régions régulatrices est bien souvent masqué par un nucléosome occlusif, lequel doit être déplacé ou évincé afin de permettre la liaison des protéines régulatrices, notamment les facteurs de transcription (FTs). Toutefois, la contribution de la composition de la chromatine à ce processus reste incomprise. Le variant d'histone H2A.Z a été identifié comme une composante de la chromatine aux régions accessibles, dont des « enhancers » potentiels. Toutefois son rôle y est inconnu, bien que des études récentes suggèrent qu'il pourrait jouer un rôle important dans la structure de la chromatine à ces régions. Par ailleurs, un lien étroit existe entre H2A.Z et la voie de signalisation des oestrogènes (notamment la 17-[beta]-estradiol (E2)). Ainsi, H2A.Z est essentiel à l'expression de plusieurs gènes cibles de l'E2. Les effets de l'E2 sont en partie exercés par un FT, le récepteur alpha des oestrogènes (ER[alpha]), lequel se lie à l'ADN suite à son activation, et ce majoritairement à des « enhancers », et permet l'établissement d'un programme transcriptionnel spécifique. Cette thèse vise à définir le rôle d'H2A.Z aux « enhancers », et plus particulièrement son influence sur l'organisation des nucléosomes aux « enhancers » liés par ER[alpha]. D'abord, mes travaux effectués à l'échelle du génome ont démontré qu'H2A.Z n'est présent qu'à certains ER[alpha]-« enhancers » actifs. Cette particularité a fait en sorte que nous avons pu comparer directement les « enhancers » actifs occupés par H2A.Z à ceux non-occupés, afin de mettre en évidence sa relation à l'environnement chromatinien. Étonnamment, il est apparu qu'H2A.Z n'introduit pas une organisation unique ou particulière des nucléosomes aux « enhancers ». Par ailleurs, nos résultats montrent qu'H2A.Z joue un rôle crucial dans la régulation de l'activité des « enhancers ». En effet, nous avons observé que suite à leur activation par l'E2, les « enhancers » occupés par H2A.Z recrutent l'ARN polymérase II (ARNPII) et produisent un transcrit. Ils recrutent également RAD21, une composante du complexe cohésine impliqué, entre autres, dans des interactions chromosomiques entre « enhancers » et promoteurs. De façon intéressante, nous avons mis en évidence que ces trois évènements, connus pour leur importance dans l'activité des « enhancers », sont dépendants d'H2A.Z. Ainsi, la présence d'H2A.Z à l' « enhancer » pourrait permettre un environnement chromatinien favorable à trois aspects clés de l'activité des « enhancers » : la présence de l'ARNPII, la transcription et la formation d'une boucle d'interaction, et par la suite, de par la proximité « enhancer »-promoteur ainsi créée, augmenter la concentration d'ARNPII à proximité du promoteur favorisant l'expression du gène cible. Un tel rôle central d'H2A.Z dans l'activité d' « enhancers » spécifiques pourrait participer à un mécanisme épigénétique ciblé de la régulation de l'expression des gènes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le nématode doré, Globodera rostochiensis, est un nématode phytoparasite qui peut infecter des plantes agricoles telles la pomme de terre, la tomate et l’aubergine. En raison des pertes de rendement considérables associées à cet organisme, il est justifiable de quarantaine dans plusieurs pays, dont le Canada. Les kystes du nématode doré protègent les œufs qu’ils contiennent, leur permettant de survivre (en état de dormance) jusqu’à 20 ans dans le sol. L’éclosion des œufs n’aura lieu qu’en présence d’exsudats racinaires d’une plante hôte compatible à proximité. Malheureusement, très peu de connaissances sont disponibles sur les mécanismes moléculaires liés à cette étape-clé du cycle vital du nématode doré. Dans cet ouvrage, nous avons utilisé la technique RNA-seq pour séquencer tous les ARNm d’un échantillon de kystes du nématode doré afin d’assembler un transcriptome de novo (sans référence) et d’identifier des gènes jouant un rôle dans les mécanismes de survie et d’éclosion. Cette méthode nous a permis de constater que les processus d’éclosion et de parasitisme sont étroitement reliés. Plusieurs effecteurs impliqués dans le mouvement vers la plante hôte et la pénétration de la racine sont induits dès que le kyste est hydraté (avant même le déclenchement de l’éclosion). Avec l’aide du génome de référence du nématode doré, nous avons pu constater que la majorité des transcrits du transcriptome ne provenaient pas du nématode doré. En effet, les kystes échantillonnés au champ peuvent contenir des contaminants (bactéries, champignons, etc.) sur leur paroi et même à l’intérieur du kyste. Ces contaminants seront donc séquencés et assemblés avec le transcriptome de novo. Ces transcrits augmentent la taille du transcriptome et induisent des erreurs lors des analyses post-assemblages. Les méthodes de décontamination actuelles utilisent des alignements sur des bases de données d’organismes connus pour identifier ces séquences provenant de contaminants. Ces méthodes sont efficaces lorsque le ou les contaminants sont connus (possède un génome de référence) comme la contamination humaine. Par contre, lorsque le ou les contaminants sont inconnus, ces méthodes deviennent insuffisantes pour produire un transcriptome décontaminé de qualité. Nous avons donc conçu une méthode qui utilise un algorithme de regroupement hiérarchique des séquences. Cette méthode produit, de façon récursive, des sous-groupes de séquences homogènes en fonction des patrons fréquents présents dans les séquences. Une fois les groupes créés, ils sont étiquetés comme contaminants ou non en fonction des résultats d’alignements du sous-groupe. Les séquences ambiguës ayant aucun ou plusieurs alignements différents sont donc facilement classées en fonction de l’étiquette de leur groupe. Notre méthode a été efficace pour décontaminer le transcriptome du nématode doré ainsi que d’autres cas de contamination. Cette méthode fonctionne pour décontaminer un transcriptome, mais nous avons aussi démontré qu’elle a le potentiel de décontaminer de courtes séquences brutes. Décontaminer directement les séquences brutes serait la méthode de décontamination optimale, car elle minimiserait les erreurs d’assemblage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé: Chaque année, les épidémies saisonnières d’influenza causent de 3 à 5 millions de cas sévères de maladie, entraînant entre 250 000 et 500 000 décès mondialement. Seulement deux classes d’antiviraux sont actuellement commercialisées pour traiter cette infection respiratoire : les inhibiteurs de la neuraminidase, tels que l’oseltamivir (Tamiflu) et les inhibiteurs du canal ionique M2 (adamantanes). Toutefois, leur utilisation est limitée par l’apparition rapide de résistance virale. Il est donc d’un grand intérêt de développer de nouvelles stratégies thérapeutiques pour le traitement de l’influenza. Le virus influenza dépend de l’activation de sa protéine de surface hémagglutinine (HA) pour être infectieux. L’activation a lieu par clivage protéolytique au sein d’une séquence d’acides aminés conservée. Ce clivage doit être effectué par une enzyme de l’hôte, étant donné que le génome du virus ne code pour aucune protéase. Pour les virus infectant l’humain, plusieurs études ont montré le potentiel de protéases à sérine transmembranaires de type II (TTSP) à promouvoir la réplication virale : TMPRSS2, TMPRSS4, HAT, MSPL, Desc1 et matriptase, identifiée récemment par notre équipe (Beaulieu, Gravel et al., 2013), activent l’HA des virus influenza A (principalement H1N1 et H3N2). Toutefois, il existe peu d’information sur le clivage de l’HA des virus influenza B, et seulement TMPRSS2 et HAT ont été identifiées comme étant capables d’activer ce type de virus. Les travaux de ce projet de maîtrise visaient à identifier d’autres TTSP pouvant activer l’HA de l’influenza B. L’efficacité de clivage par la matriptase, hepsine, HAT et Desc1 a été étudiée et comparée entre ces TTSP. Ces quatre protéases s’avèrent capables de cliver l’HA de l’influenza B in vitro. Cependant, seul le clivage par matriptase, hepsine et HAT promeut la réplication virale. De plus, ces TTSP peuvent aussi supporter la réplication de virus influenza A. Ainsi, l’utilisation d’un inhibiteur de TTSP, développé en collaboration avec notre laboratoire, permet de bloquer significativement la réplication virale dans les cellules épithéliales bronchiques humaines Calu-3. Cet inhibiteur se lie de façon covalente et lentement réversible au site actif de la TTSP par un mécanisme slow tight-binding. Puisque cet inhibiteur cible une composante de la cellule hôte, et non une protéine virale, il n’entraîne pas le développement de résistance après 15 passages des virus en présence de l’inhibiteur dans les cellules Calu-3. L’inhibition des TTSP activatrices d’HA dans le système respiratoire humain représente donc une nouvelle stratégie thérapeutique pouvant mener au développement d’antiviraux efficaces contre l’influenza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’extrémité des chromosomes linéaires est une structure nucléoprotéique très conservée chez les organismes eucaryotes. Elle est constituée du télomère et des régions sous-télomériques répétées (STR) qui sont placées en amont du télomère. Chez la levure bourgeonnante, on trouve deux types de télomère, les télomères XY’ et les télomères X, qui se distinguent par la nature des STR positionnées en amont des répétitions télomériques. Le télomère et les STR sont liés par pas moins de dix protéines qui vont participer au maintien et à la régulation de l’extrémité chromosomique nécessaires à la stabilité du génome. Le télomère protège ainsi le chromosome de dégradations ou encore de fusions avec d’autres chromosomes. Le maintien de la taille du télomère est assuré par la télomérase, une transcriptase inverse, qui permet l’ajout de répétitions pour pallier leur perte lors de la phase de réplication durant le cycle cellulaire. Lorsque la télomérase est absente, deux types particuliers de cellules, les survivants de type I et les survivants de type II, peuvent maintenir leurs télomères grâce aux mécanismes de recombinaison homologue. Chez l’humain, les répétitions télomériques sont également liées par un certain nombre de protéines nécessaires au maintien de la stabilité de l’extrémité chromosomique. L’implication des télomères dans les processus de cancérisation, de vieillissement, mais également dans des maladies congénitales fait de cette structure un pivot dans le domaine de la recherche fondamentale. Dans 10 % des cas de cancers, l’allongement n’est pas dû à une réactivation de la télomérase comme c’est en général le cas, mais est inhérent à des processus de recombinaison homologue, comme chez la levure. Les homologies de séquences, de protéines, mais aussi de mécanismes de régulation des télomères avec les cellules humaines, font de S. cerevisiae un excellent modèle d’étude. Cette thèse se divise en trois chapitres. Les deux premiers traitent de l’interaction du complexe yKu avec les télomères de type XY’ dans le chapitre 1 puis de son interaction avec les télomères de type X dans le chapitre 2. Le chapitre 3 traite du comportement d’un type de survivant chez S. cerevisiae. Le chapitre 1 porte donc sur l’analyse des sites de liaison aux télomères XY’ du complexe yKu par la technique de ChEC in vivo. yKu intervient dans de nombreux processus de régulation des télomères, mais aussi dans un mécanisme de réparation des cassures double-brin de l’ADN (DSBs), la NHEJ (Non homologous end-joining). Les résultats présentés dans cette partie appuient un modèle dans lequel yKu aurait plusieurs sites de liaison aux télomères et dans les répétitions télomériques interstitielles. Nous supposons que la liaison du complexe se ferait lors de la formation d’une cassure de type « one-sided break » générée à la suite du passage de la fourche de réplication à l’intérieur des répétitions télomériques. Le chapitre 2 est également une étude des sites de liaison par la technique de ChEC in vivo du complexe yKu, mais cette fois-ci aux télomères X. Les observations faites dans cette partie viennent corroborer les résultats du chapitre 1 de la liaison de yKu à la jonction entre le télomère et les STRs, de plus elle met en évidence des interactions potentielles du complexe avec les éléments X laissant supposer l’existence d’un potentiel repliement du télomère sur la région sous-télomérique chez la levure. Enfin, le chapitre 3 est axé sur l’étude du comportement des survivants de type I, des cellules post-sénescences qui maintiennent leurs télomères par un processus de recombinaison homologue, le mécanisme de BIR (break-induced replication) en l’absence de télomérase. Les survivants de type I présentent une croissance lente liée à un arrêt du cycle cellulaire en phase G2/M qui dépend de la protéine de contrôle Rad9, dont l’activité est en général induite par des cassures double-brin. Ce chapitre a permis d’apporter des précisions sur la croissance lente probablement inhérente à un berceau télomérique très restreint chez ce type cellulaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Les télomères sont des structures nucléoprotéiques spécialisées qui assurent la stabilité du génome en protégeant les extrémités chromosomiques. Afin d’empêcher des activités indésirables, la réparation des dommages à l’ADN doit être convenablement régulée au niveau des télomères. Pourtant, il existe peu d’études de la réparation des dommages induits par les ultraviolets (UVs) dans un contexte télomérique. Le mécanisme de réparation par excision de nucléotides (NER pour « Nucleotide Excision Repair ») permet d’éliminer les photoproduits. La NER est un mécanisme très bien conservé de la levure à l’humain. Elle est divisée en deux sous voies : une réparation globale du génome (GG-NER) et une réparation couplée à la transcription (TC-NER) plus rapide et plus efficace. Dans notre modèle d’étude, la levure Saccharomyces cerevisiae, une forme compactée de la chromatine nommée plus fréquemment « hétérochromatine » a été décrite. Cette structure particulière est présente entre autres, au niveau des régions sous-télomériques des extrémités chromosomiques. La formation de cette chromatine particulière implique quatre protéines nommées Sir (« Silent Information Regulator »). Elle présente différentes marques épigénétiques dont l’effet est de réprimer la transcription. L’accès aux dommages par la machinerie de réparation est-il limité par cette chromatine compacte ? Nous avons donc étudié la réparation des lésions induites par les UVs dans différentes régions associées aux télomères, en absence ou en présence de protéines Sir. Nos données ont démontré une modulation de la NER par la chromatine, dépendante des nucléosomes stabilisés par les Sir, dans les régions sous-télomériques. La NER était moins efficace dans les extrémités chromosomiques que dans les régions plus proches du centromère. Cet effet était dépendant du complexe YKu de la coiffe télomérique, mais pas dépendant des protéines Sir. La transcription télomériques pourrait aider la réparation des photoproduits, par l’intermédiaire de la sous-voie de TC-NER, prévenant ainsi la formation de mutations dans les extrémités chromosomiques. Des ARN non codants nommés TERRA sont produits mais leur rôle n’est pas encore clair. Par nos analyses, nous avons confirmé que la transcription des TERRA faciliterait la NER dans les différentes régions sous-télomériques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La synthèse d’un ARNm eucaryotique dépend d’une suite d’étapes qui inclut notamment l’ajout d’une queue poly(A) à son extrémité 3’. Au noyau, la queue poly(A) des ARNms est liée par PABPN1 (poly(A)-binding protein nuclear 1). PABPN1 fut notamment caractérisée, d’après des études in vitro, pour stimuler la réaction de polyadénylation en plus de contrôler la taille ultime des queues poly(A). Cela dit, la ou les fonction(s) biologique(s) de PABPN1 est/sont cependant largement méconnue(s). Chez Schizosaccharomyces pombe (S. pombe), Pab2 est l’orthologue présumé de PABPN1. Or, mes travaux indiquent que Pab2 est fonctionnellement différente de PABPN1 à l’égard de son rôle sur le processus général de polyadénylation. Ainsi, in vivo, l’absence de Pab2 entraîne l’expression et l’accumulation d’un groupe limité d’ARNs hyperadénylés parmi lesquels se trouvent de nombreux petits ARNs nucléolaires non-codants (snoRNAs) lesquels constituent normalement un groupe abondant d’ARN poly(A)-. Mes résultats supportent ainsi un mécanisme par lequel des snoRNAs immatures poly(A)+, sont convertis en une forme mature poly(A)- par le biais de Pab2 et de l’activité 3’-->5’ exoribonucléase de l’exosome à ARN. Ces observations sont inusitées dans la mesure où elles associent une fonction pour une PABP dans la maturation d'ARNs non-codants, contrairement à la notion que les PABPs travaillent exclusivement au niveau des ARNms, en plus de procurer une nouvelle perspective face au mécanisme de recrutement de l'exosome à ARN à des substrats poly(A)+. La formation de l’extrémité 3’ d’un ARN est un processus étroitement lié à la terminaison de sa transcription. Pour les gènes codants, la terminaison transcriptionnelle est initiée par le clivage endonucléolytique du pré-ARNm. Ce clivage génère une extrémité d’ARN 5’ libre laquelle sera ciblée par une exoribonucléase 5'-->3’ afin de mener à bien l’éviction de l’ARNPII de la matrice d’ADN (terminaison transcriptionnelle de type torpedo). Au contraire, chez Saccharomyces cerevisiae (S. cerevisiae), la majorité des gènes non-codants, incluant les snoRNAs, dépendent plutôt du complexe NNS (Nrd1/Nab3/Sen1) pour la terminaison de leur transcription. Cela dit, il est incertain si le complexe NNS est conservé chez d’autres espèces. À cet égard, mes travaux indiquent que S. pombe est dépourvu d’un mécanisme de terminaison de la transcription de type NNS. Seb1, l’orthologue présumé de Nrd1 chez S. pombe, s’associe plutôt à la machinerie de clivage et de polyadénylation et influence la sélection de site de polyadénylation à l’échelle du génome. Mes résultats supportent ainsi l’utilisation de la machinerie de maturation 3’ des ARNms comme principal vecteur de terminaison transcriptionnelle chez S. pombe et identifient Seb1 comme un facteur clé de ce processus. L’évènement transcriptionnel étant hautement complexe, des erreurs peuvent arriver de manière stochastique menant à l’accumulation d’ARNs aberrants potentiellement néfastes pour la cellule. Or, mes travaux ont mis en lumière un mécanisme de surveillance co-transcriptionnel des ARNs impliquant l’exosome à ARN et lié à la terminaison de la transcription. Pour ce faire, l’exosome à ARN promeut la terminaison transcriptionnelle via la dégradation d’une extrémité 3’ libre d’ARN devenue émergente suite au recul de l’ARNPII le long de la matrice d’ADN (phénomène de backtracking). Mes résultats supportent ainsi une terminaison de la transcription de type torpedo inversé (3'-->5’) réévaluant par la même occasion le concept voulant que la terminaison de la transcription s’effectue uniquement selon une orientation 5’-->3’. Somme toute, mes travaux de doctorat auront permis d’identifier et de caractériser plus en détail les facteurs et mécanismes impliqués dans la maturation 3’ et la terminaison de la transcription des gènes codants et non-codants chez l’organisme modèle S. pombe.