2 resultados para Van Der Pol Equation
em Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada
Resumo:
Cette thèse est constituée de deux parties : Dans la première partie nous étudions l’existence de solutions périodiques, de periode donnée, et à variations bornées, de l’équation de van der Pol en présence d’impulsions. Nous étudions, en premier, le cas où les impulsions ne dépendent pas de l’état. Ensuite, nous considèrons le cas où les impulsions dépendent de la moyenne de l’état et enfin, nous traitons le cas général où les impulsions dépendent de l’état. La méthode de résolution est basée sur le principe de point fixe de type contraction. Nous nous intéressons ensuite à l’étude d’un problème avec trois points aux limites, associé à certaines équations différentielles impulsives du second ordre. Nous obtenons un premier résultat d’existence de solutions en appliquant le théorème de point fixe de Schaefer. Un deuxième résultat est obtenu en utilisant le théorème de point fixe de Sadovskii. Pour le résultat d’unicité des solutions nous appliquons, enfin, un théorème de point fixe de type contraction. La deuxième partie est consacrée à la justification de la technique de moyennisation dans le cadre des équations différentielles floues. Les conditions sur les données que nous imposons sont moins restrictives que celles de la littérature.
Resumo:
Notre travail se consacre à l’étude de l’existence de solution T-anti-périodique de l’équation de Liénard dans le cas impulsif. Dans notre thèse, cette équation sera appliquée à l’équation du pendule simple, de Josephson dans la super-conductivité et enfin à l’équation de Van der Pol pour modéliser un circuit de triode à tube vide. On considérera [florin] et J des actions extérieures sur le système où [florin] est une force Lebesgue intégrable (respectivement Henstock-Kurzweil intégrable au second chapitre) et J (parfois noté I) une stimulation impulsive. En appliquant le théorème du point fixe de Banach, on obtient des théorèmes d’existence de solution au sens de fonctions généralisées soumise à un ensemble de conditions données par les bornes à priori. Ensuite, par le même théorème, la suite d’itérations G[indice supérieur n] ([théta][indice inférieur 0]) converge uniformément vers la solution [théta] à la vitesse de convergence bornée avec la première dérivée […] est de variation totale finie sur [0; 2T] et la dérivée seconde généralisée […] Lebesgue intégrable sur [0; 2T] dans le cas non impulsif. Finalement, sous les mêmes hypothèses avec [florin] Henstock-Kurzweil (HK) intégrable, nous obtiendrons des conditions qui garantissent l’existence d’une solution T-antipériodique [théta] absolument continue sur R de l’équation de Liénard, qui admet à la fois une dérivée première […] de variation bornée et la seconde dérivée généralisée […] qui est HK--intégrable dans le cas non impulsif. Comme au premier chapitre nous considérerons également le cas des instants d’impulsion [gamma][indice inférieur kappa] indépendants d’état avec [florin] HK--intégrable. À chaque fois nous donnons quelques exemples d’illustration pour appuyer nos résultats. [Certains symboles non conformes]