2 resultados para Phosphate of calcium cement
em Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada
Resumo:
Abstract : The structural build-up of fresh cement-based materials has a great impact on their structural performance after casting. Accordingly, the mixture design should be tailored to adapt the kinetics of build-up given the application on hand. The rate of structural build-up of cement-based suspensions at rest is a complex phenomenon affected by both physical and chemical structuration processes. The structuration kinetics are strongly dependent on the mixture’s composition, testing parameters, as well as the shear history. Accurate measurements of build-up rely on the efficiency of the applied pre-shear regime to achieve an initial well-dispersed state as well as the applied stress during the liquid-solid transition. Studying the physical and chemical mechanisms of build-up of cement suspensions at rest can enhance the fundamental understanding of this phenomenon. This can, therefore, allow a better control of the rheological and time-dependent properties of cement-based materials. The research focused on the use of dynamic rheology in investigating the kinetics of structural build-up of fresh cement pastes. The research program was conducted in three different phases. The first phase was devoted to evaluating the dispersing efficiency of various disruptive shear techniques. The investigated shearing profiles included rotational, oscillatory, and combination of both. The initial and final states of suspension’s structure, before and after disruption, were determined by applying a small-amplitude oscillatory shear (SAOS). The difference between the viscoelastic values before and after disruption was used to express the degree of dispersion. An efficient technique to disperse concentrated cement suspensions was developed. The second phase aimed to establish a rheometric approach to dissociate and monitor the individual physical and chemical mechanisms of build-up of cement paste. In this regard, the non-destructive dynamic rheometry was used to investigate the evolutions of both storage modulus and phase angle of inert calcium carbonate and cement suspensions. Two independent build-up indices were proposed. The structural build-up of various cement suspensions made with different cement contents, silica fume replacement percentages, and high-range water reducer dosages was evaluated using the proposed indices. These indices were then compared to the well-known thixotropic index (Athix.). Furthermore, the proposed indices were correlated to the decay in lateral pressure determined for various cement pastes cast in a pressure column. The proposed pre-shearing protocol and build-up indices (phases 1 and 2) were then used to investigate the effect of mixture’s parameters on the kinetics of structural build-up in phase 3. The investigated mixture’s parameters included cement content and fineness, alkali sulfate content, and temperature of cement suspension. Zeta potential, calorimetric, spectrometric measurements were performed to explore the corresponding microstructural changes in cement suspensions, such as inter-particle cohesion, rate of Brownian flocculation, and nucleation rate. A model linking the build-up indices and the microstructural characteristics was developed to predict the build-up behaviour of cement-based suspensions The obtained results showed that oscillatory shear may have a greater effect on dispersing concentrated cement suspension than the rotational shear. Furthermore, the increase in induced shear strain was found to enhance the breakdown of suspension’s structure until a critical point, after which thickening effects dominate. An effective dispersing method is then proposed. This consists of applying a rotational shear around the transitional value between the linear and non-linear variations of the apparent viscosity with shear rate, followed by an oscillatory shear at the crossover shear strain and high angular frequency of 100 rad/s. Investigating the evolutions of viscoelastic properties of inert calcite-based and cement suspensions and allowed establishing two independent build-up indices. The first one (the percolation time) can represent the rest time needed to form the elastic network. On the other hand, the second one (rigidification rate) can describe the increase in stress-bearing capacity of formed network due to cement hydration. In addition, results showed that combining the percolation time and the rigidification rate can provide deeper insight into the structuration process of cement suspensions. Furthermore, these indices were found to be well-correlated to the decay in the lateral pressure of cement suspensions. The variations of proposed build-up indices with mixture’s parameters showed that the percolation time is most likely controlled by the frequency of Brownian collisions, distance between dispersed particles, and intensity of cohesion between cement particles. On the other hand, a higher rigidification rate can be secured by increasing the number of contact points per unit volume of paste, nucleation rate of cement hydrates, and intensity of inter-particle cohesion.
Resumo:
Résumé : La variation de la [Ca2+] intracellulaire participe à nombreux de processus biologiques. Les cellules eucaryotes expriment à la membrane plasmique une variété de canaux par lesquelles le calcium peut entrer. Dans les cellules non excitables, deux mécanismes principaux permettent l'entrée calcique; l'entrée capacitative de Ca2+ via Orai1 (SOCE) et l'entrée calcique activé par un récepteur (ROCE). Plusieurs protéines clés sont impliquées dans la régulation de ces voies d'entrée calcique, ainsi que dans l'homéostasie calcique. TRPC6 est un canal calcique impliquée dans l'entrée calcique dans les cellules à la suite d’une stimulation d’un récepteur hormonal. TRPC6 transloque à la membrane cellulaire et il y demeure jusqu'à ce que le stimulus soit retiré. Les mécanismes qui régulent le trafic et l'activation de TRPC6 sont cependant encore peu connus. Des découvertes récentes ont démontré qu'il y a un rôle potentiel de Rho kinase dans l'activité de TRPC6. Rho kinase est activée par la petite protéine G RhoA qui peut être activée par les protéines G hétérotrimériques Gα12 et Gα13. En plus de Gα12 et Gα13, les protéines de désensibilisation des GPCR β -arrestin 1 et / ou β-arrestin 2 peuvent aussi activer RhoA. Le but de notre étude est d'examiner la participation des protéines Gα12/13 et β-arrestin 1/ β-arrestin 2 dans l'activation de TRPC6 et de la protéine Orai1. Nous avons utilisé des ARN interférant (siRNA) spécifiques pour induire une réduction de l'expression de Gα12/13 ou β-arrestin 1/β-arrestin 2. La conséquence sur l’entrée de Ca2+ dans les cellules a été ensuite déterminée par imagerie calcique en temps réel suite à une stimulation par la vasopressine (AVP), thapsigargin ou carbachol. Nous avons donc identifié que dans des cellules A7r5, une lignée cellulaire de musculaires lisses vasculaires où le canal TRPC6 exprimé de manière endogène, la diminution de l’expression des protéines Gα12 ou Gα13 ne semble pas modifier l’entrée Ca2+ induit par l’AVP par rapport aux cellules témoins. D'autre part, la diminution de l’expression β-arrestin 1 ou β-arrestin 2 dans des cellules HEK 293 ainsi que des cellules HEK 293 exprimant de façon stable TRPC6 (cellules T6.11) ont augmenté l’entrée de Ca2+ induite par thapsigargin, un activateur pharmacologique de SOCE. Des études de co-immunoprécipitation démontrent une interaction entre la β-arrestin 1 et STIM1, alors qu'aucune interaction n'a été observée entre les β-arrestin 1 et Orai1. Nous avons de plus montré à l'aide d'analyse en microscopie confocale que la diminution de l’expression β-arrestin 1 ou β-arrestin 2 n’influence pas la quantité d’Orai1 à la périphérie cellulaire. Cependant, des résultats préliminaires indiquent que la diminution de l’expression β-arrestin 1 ou β-arrestin 2 augmente la quantité de STIM1-YFP dans l'espace intracellulaire et diminue sa quantité à la périphérie cellulaire. En conclusion, nous avons montré que les β-arrestin 1 ou β-arrestin 2 sont impliquées dans l'entrée capacitative de Ca2+ (SOCE) et contrôlent la quantité de STIM1 dans le réticulum endoplasmique.