2 resultados para Global warming

em Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La construction des biosystèmes d’oxydation passive du méthane (BOPM) est une option économique et durable pour réduire les émissions de méthane des sites d’enfouissement de déchets et des effets subséquents du réchauffement climatique. Les BOPM sont constitués de deux couches principales: la couche d'oxydation du méthane (MOL) et la couche de distribution du gaz (GDL). L'oxydation du méthane se produit dans la MOL par les réactions biochimiques des bactéries méthanotrophes, et la GDL est construite sous la MOL pour intercepter et distribuer les émissions fugitives de biogaz à la base de la MOL. Fondamentalement, l'efficacité d'un BOPM est définie en fonction de l'efficacité d'oxydation du méthane dans la MOL. Par conséquent, il est indispensable de fournir des conditions adéquates pour les activités bactériennes des méthanotrophes. En plus des paramètres environnementaux, l'intensité et la distribution du biogaz influencent l'efficacité des BOPM, et ils peuvent rendre le matériau de la MOL - avec une grande capacité d'accueillir les activités bactériennes - inutilisables en termes d'oxydation du méthane sur place. L'effet de barrière capillaire le long de l'interface entre la GDL et la MOL peut provoquer des émissions localisées de méthane, due à la restriction ou la distribution non uniforme de l’écoulement ascendant du biogaz à la base de la MOL. L'objectif principal de cette étude est d'incorporer le comportement hydraulique non saturé des BOPM dans la conception des BOPM, afin d’assurer la facilité et la distribution adéquates de l'écoulement du biogaz à la base de la MOL. Les fonctions de perméabilité à l'air des matériaux utilisés pour construire la MOL des BOPM expérimentaux au site d’enfouissement des déchets de St Nicéphore (Québec, Canada), ainsi que celles d'autres de la littérature technique, ont été étudiés pour évaluer le comportement d'écoulement non saturé du gaz dans les matériaux et pour identifier le seuil de migration sans restriction du gaz. Ce dernier seuil a été introduit en tant que un paramètre de conception avec lequel le critère de conception recommandé ici, c’est à dire la longueur de la migration sans restriction de gaz (LMSG), a été défini. La LMSG est considérée comme la longueur le long de l'interface entre la GDL et la MOL où le biogaz peut migrer à travers la MOL sans restriction. En réalisant des simulations numériques avec SEEP/W, les effets de la pente de l'interface, des paramètres définissant la courbe de rétention d'eau, de la fonction de la conductivité hydraulique du matériau de la MOL sur la valeur de la LMSG (représentant la facilité d'écoulement du biogaz à l'interface) et de la distribution de l'humidité (et par conséquent celle du biogaz) ont été évalués. Selon les résultats des simulations, la conductivité hydraulique saturée et la distribution des tailles de pores du matériau de la MOL sont les paramètres les plus importants sur la distribution de l'humidité le long de l'interface. Ce dernier paramètre influe également sur la valeur du degré de saturation et donc la facilité du biogaz à la base de la MOL. La densité sèche du matériau de MOL est un autre paramètre qui contrôle la facilité d'écoulement ascendant du biogaz. Les limitations principales de la présente étude sont associées au nombre de matériaux de MOL testés et à l'incapacité de SEEP/W de considérer l'évapotranspiration. Toutefois, compte tenu des hypothèses raisonnables dans les simulations et en utilisant les données de la littérature, on a essayé de réduire ces limitations. En utilisant les résultats des expériences et des simulations numériques, des étapes et des considérations de conception pour la sélection du matériau de MOL et de la pente d'interface ont été proposées. En effet,le comportement hydraulique non saturé des matériaux serait intégré dans les nécessités de conception pour un BOPM efficace, de sorte que la capacité maximale possible d'oxydation du méthane du matériau de la MOL soit exploitée.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.