2 resultados para Dna-replication
em Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada
Resumo:
Résumé : Le nucléole est considéré comme étant une « usine » à produire des ribosomes. Cette production est la fonction la plus énergivore de la cellule. Elle met en jeu les trois ARN polymérases et représente 80% de l’activité de transcription au sein d’une cellule. Les trois quarts de cette activité de transcription correspondent à la synthèse des ARNr par l’ARN polymérase I (ARNPI). Ainsi mieux comprendre les mécanismes cellulaires se déroulant à l’intérieur de ce compartiment permettra le développement de nouveaux traitements contre le cancer. La synthèse d’ARNr par l’ARNPI est régulée à trois niveaux : l’initiation de la transcription, l’élongation et le nombre de gènes de l’ARNr en transcription. La plupart des travaux qui se sont intéressés à ces niveaux de régulation ont été réalisés avec des cellules en phase exponentielle de croissance. Au cours de mes travaux, je me suis attardé sur la régulation de la transcription par l’ARNPI au cours de la phase G1 du cycle cellulaire et au début de la phase S. Ainsi mes résultats ont montré que si la chromatine des gènes de l’ARNr est essentiellement dépourvue de nucléosomes, la régulation de l’ARNPI diffère dans des cellules en G1 et au début de la phase S. J’ai pu de ce fait observer qu’en G1, la transcription de l’ARNPI se concentre sur un nombre réduit de gènes en transcription. Dans des cellules arrêtées au début de la phase S avec de l’hydroxyurée, la transcription de l’ARNPI est perturbée par un défaut de maturation de l’ARNR. Fort de ces résultats sur la nature des gènes ribosomaux en phase G1, je me suis attardé à la réparation de ces gènes lors de cette phase. Alors que dans des cellules en phase exponentielle de croissance irradiées avec des UVC, la chromatine des gènes de l’ARNr se ferme ; je n’ai pas observé la formation de nucléosomes suite à l’irradiation de cellules synchronisée en G1. Mes résultats montrent également que la réparation est plus efficace. Parallèlement, j’ai exploré l’assemblage du complexe de réparation par excision de nucléotides. Toutefois, les résultats obtenus sont peu concluants.
Resumo:
Résumé : Chez la levure Saccharomyces cerevisiae, la régulation de la longueur des télomères témoigne de la compensation entre mécanismes d'érosion (exonucléases, réplication semi-conservative et résection), facteurs d’élongation (la télomérase, transcriptase inverse à l'action retrouvée dans 90% des cancers humains) et actions de diverses protéines de régulation télomérique spécifiques, conférant aux télomères leur caractère de « capuchon » protégeant les extrémités des chromosomes eucaryotes. Afin de savoir si les gènes impossibles à déléter, car essentiels à la survie cellulaire, jouent aussi un rôle sur l’homéostasie télomérique, j'ai réalisé un criblage génétique utilisant des mutants tet-off de la levure pour lesquels la sous-expression considérable d'un gène essentiel a été induite de façon conditionnelle. Ceci permet d’étudier les effets qui en résultent sur l’homéostasie des télomères. Au total, mon travail a traité plus de 662 gènes essentiels pour lesquels j'ai analysé le phénotype de longueur des télomères de manière qualitative par comparaison des télomères de souches mutées par rapport à ceux de souches de type sauvage. Puis, grâce à l’amélioration technique que j'ai mise au point, la quantification de la taille des répétitions télomériques de 300 de ces souches a déjà pu être précisément analysée. Il est notable que tous les gènes essentiels étudiés ici ont des effets très différents qui résultent en des chromosomes possédant des télomères de longueur très inégale. Pour près de 40% des mutants analysés, les tailles de télomères sont apparues critiquement différentes de celles normalement présentées par la levure, beaucoup de ces gènes essentiels étant impliqués dans des mécanismes affectant le cycle cellulaire, la réparation, etc. La majorité des gènes criblés apporte un important complément d’information dans une littérature presque inexistante sur les effets de gènes essentiels de la levure au niveau de la biologie des télomères. C’est le cas des mutations de YHR122W (montrant des télomères long) et YOR262W (télomères courts), deux gènes qui sont apparus d'après mes résultats nécessaires au maintien de l'homéostasie télomérique (prenant place dans un grand ensemble de gènes que j’ai dénommé gènes ETL pour Essential for Telomere Length Maintenance).