5 resultados para transmission blocking vaccines
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
This paper deals with the impact of several antenna chices on the radio transmission performance within a cellular Mobile Broaband System (MBS) currently under research in Europe. Several antenna types are considered, namely switchable-beam antennas and adaptive antennas employing a phased array approach.
Resumo:
MC-CDMA (MultiCarrier Code Division Multiple Access), currently regarded as a promissing multiple access scheme for broadband communications, is known to combine the advantages of an OFDM-based (Orthogonal Frequency Division Multiplexing), CP-assisted (Cyclic Prefix) block transmission with those of CDMA systems. Recently, it was recognised that DS-CDMA (Direct Sequence) implementations can also take advantage of the beneficts of the CP-assisted block transmission approach, therefore enabling an efficient use of FFT-based (Fast Fourier Transform), chip level FDE (Frequency- Domain Equalisation) techniques. In this paper we consider the use of IB-DFE (Iterative Block Decision Feedback Equalisation) FDE techniques within both CP-assisted MC-CDMA systems with frequency-domain spreading and DS-CDMA systems. Our simulation results show that an IB-DFE receiver with moderate complexity is suitable in both cases, with excellent performances that can be close to the single-code matched filter bound (especially for the CP-assisted DSCDMA alternative), even with full code usage.
Impact of antenna choices on the reliability of mobile broadband transmission at mm-wave frequencies
Resumo:
This paper deals with the impact of several antenna choices on the radio transmission performance within a cellular Mobile Broaband System (MBS) currently under research in Europe. Several antenna types are considered, namely switchble-beam antennas and adaptive antennas employing a phased array approach.
Resumo:
The mathematical model of the transmission of the turbine engine was made ... (texto em russo)
Resumo:
The number of software applications available on the Internet for distributing video streams in real time over P2P networks has grown quickly in the last two years. Typical this kind of distribution is made by television channel broadcasters which try to make their content globally available, using viewer's resources to support a large scale distribution of video without incurring in incremental costs. However, the lack of adaptation in video quality, combined with the lack of a standard protocol for this kind of multimedia distribution has driven content providers to basically ignore it as a solution for video delivery over the Internet. While the scalable extension of the H. 264 encoding (H.264/SVC) can be used to support terminal and network heterogeneity, it is not clear how it can be integrated in a P2P overlay to form a large scale and real time distribution. In this paper, we start by defining a solution that combines the most popular P2P file-sharing protocol, the BitTorrent, with the H. 264/SVC encoding for a real-time video content delivery. Using this solution we then evaluate the effect of several parameters in the quality received by peers.