4 resultados para toxicity effect

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia, Especialidade em Biologia Molecular, Universidade do Algarve, 2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation and fibrillation of proteins have a great importance in medicine and industry. Misfolding and aggregation are the basis of many neurodegenerative diseases like Alzheimer and Parkinson. Osmolytes are molecules that can accumulate within cells and act as protective agents and they can inclusively act as protein stabilizers when cells are exposed to stress conditions. Osmolytes can also act as protein stabilizers in vitro. In this work, two different proteins were studied, the ribosomal protein from Thermus thermophilus and the mouse prion protein. The existence of an unstructured N-terminal on the prion protein does not affect its stability. The effect of the osmolyte sucrose on the fibrillation and stabilization of these two proteins was studied through kinectic and equilibrium measurements. It was shown that sucrose is able to compact the native structure of S6 protein in fibrillization conditions. Sucrose affects also folding and unfolding kinetic of S6 protein, delaying unfolding and increasing folding rate constants. The mechanism of stabilization by sucrose is non-specific because it is distributed for all protein structure, as it was demonstrated by a protein engineering approach. Sucrose delays the process of formation and elongation of S6 and prion protein from mouse. This delay is the result of the compaction of the native structure refered above. However, cellular toxicity studies have shown that fibrils formed in the presence of sucrose are more toxic to neuronal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In ecotoxicology a major focus is in the aquatic environment, not only because it presents a great economic value to man but it is an ecosystem widely affected by the growing anthropogenic pollution. Most of the studies performed relate to adverse effects in development, reproductive or endocrine disruption but little is known about the possible effects in bone formation and skeletal development. In this study, we set out to evaluate the effects of 8 aquatic pollutants on the skeletal development using an in vivo system, the zebrafish larvae aged 20 days post-fertilization, through chronic exposure. Several endpoints were considered such as the cumulative mortality, total length, occurrence of skeletal deformities and marker gene expression. We were able to establish LD50 values for some pollutants, like 3-methylcholanthrene, lindane, diclofenac, cobalt and vanadate and found that the total length was not affected by any of the pollutants tested. Cobalt was the most harmful chemical to affect hatching time, severely affecting the ability of the zebrafish embryos to hatch and overall the number of deformities increased upon exposure to tested chemicals but no patterns of deformities were identified. We also propose that 3-methylcholanthrene has an osteogenic effect, affecting osteoblast and osteoclast function and that op levels can act as a mediator of 3-methylcholanthrene toxic stress to the osteoblast. In turn we found naphthalene to probably have a chondrogenic effect. Our results provided new insights into the potential osteotoxicity of environmental pollutants. Future studies should aim at confirming these preliminary data and at determining mechanisms of osteotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The benefits of calcium applications pre and postharvest on fruit storage ability have been mentioned in the bibliography. It was objective of this work to study the effect of calcium preharvest application in two different forms and calcium chloride application postharvest on 'Hayward' kiwifruit storage ability. Kiwifruit vines were sprayed with 0.03% CaCl2 or 0.03% CaO at one, three and four months before harvest. The control did not have any treatment. After harvest, half fruits were dipped for 2 min in a solution of 1% CaCl2, left to dry and stored at 0 degrees C. The other half was stored at the same temperature without any treatment. The commercial yield was not affected by treatments. During storage, fruits dipped in 1% CaCl2 softened slower and than fruits not treated. Weight loss was higher in fruits treated with CaO preharvest. SSC showed a significant decrease in fruits sprayed with CaO from 4 to 6 months storage. This work suggests that immersion of kiwifruit in 1% CaCl2 postharvest benefits storage life capacity; preharvest spraying with CaCl2 seems to be better than with CaO. However, we have to try higher calcium concentrations in order to get better results in storage ability but, without causing toxicity on the vines.