2 resultados para standard molar enthalpy of formation

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The undesirable enrichment of water by nutrients may be a problem, especially in areas with restricted exchange with the sea. The tidal regime flushes the system and contributes for the removal of phytoplankton, favouring phytobenthos as the target of enhanced nutrients. Water samples were collected during the years of 2006 and 2007-08 for nutrients, chlorophyll a and dissolved oxygen. Sediment sample s were also collected for pore water nutrients and benthic chlorophyll a. From comparison with previous work, a decrease in the nitrogen concentration in the water column can be pointed out, which may indicate an improvement of the water quality. Pore water DAIN represents approximately 75% of the total DAIN of the whole lagoon. Benthic chlorophyll a concentrations were much larger than in the water column, representing around 99% of the total chlorophyll existent in the lagoon. Benthic microalgae play a relevant role in this system and therefore standard monitoring programs of the WFD, which do not consider this component, may fail to track nutrient-driven changes in primary producers. Dissolved oxygen concentration could be near critical levels during the summer (early in the morning), especially in the inner channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregation and fibrillation of proteins have a great importance in medicine and industry. Misfolding and aggregation are the basis of many neurodegenerative diseases like Alzheimer and Parkinson. Osmolytes are molecules that can accumulate within cells and act as protective agents and they can inclusively act as protein stabilizers when cells are exposed to stress conditions. Osmolytes can also act as protein stabilizers in vitro. In this work, two different proteins were studied, the ribosomal protein from Thermus thermophilus and the mouse prion protein. The existence of an unstructured N-terminal on the prion protein does not affect its stability. The effect of the osmolyte sucrose on the fibrillation and stabilization of these two proteins was studied through kinectic and equilibrium measurements. It was shown that sucrose is able to compact the native structure of S6 protein in fibrillization conditions. Sucrose affects also folding and unfolding kinetic of S6 protein, delaying unfolding and increasing folding rate constants. The mechanism of stabilization by sucrose is non-specific because it is distributed for all protein structure, as it was demonstrated by a protein engineering approach. Sucrose delays the process of formation and elongation of S6 and prion protein from mouse. This delay is the result of the compaction of the native structure refered above. However, cellular toxicity studies have shown that fibrils formed in the presence of sucrose are more toxic to neuronal cells.