7 resultados para solar radiation software

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Artificial Neural Networks are applied to multistep long term solar radiation prediction. The networks are trained as one-step-ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and Auto-regressive with exogenous inputs solar radiationmodels are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images. The input-output structure of the neural network models is selected using evolutionary computation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese dout., Química, Universidade do Algarve, 2005

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper climate discrete-time dynamic models for the inside air temperature of two different greenhouses are identified, using data acquired during two different periods of the year. These models employ data from air temperature and relative humidity (both outside and inside the greenhouse), solar radiation, wind speed, and control inputs (ventialtion, etc.).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of the Radial Basis Function (RBF) Neural Network (NN) to greenhouse inside air temperature modelling has been previously investigated (Ferreira et al., 2000a). In those studies, the inside air temperature is modelled as a function of the inside relative humidity and of the outside temperature and solar radiation. A second-order model structure previously selected (Cunha et al., 1996) in the context of dynamic temperature models identification, is used.