7 resultados para small scale production model
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Trammel net size selectivity was studied for the most important metiers in four southern European areas: the Cantabrian Sea (Atlantic, Basque Country, Spain), the Algarve (Atlantic, southern Portugal), the Gulf of Cadiz (Atlantic, Spain) and the Cyclades Islands (Mediterranean, Aegean Sea, Greece). These metiers were: cuttlefish (Sepia officinalis) and soles (Solea senegalensis, Microchirus azevia, Synaptura lusitanica) in the Algarve and the Gulf of Cadiz, sole (Solea solea) in the Cantabrian Sea and mixed fin-fish in the Cyclades. In each area, experimental trammel nets of six different types (combinations of two large outer panel mesh sizes and three small inner panel meshes) were constructed. Fishing trials were carried out on a seasonal basis (four seasons in the Cantabrian Sea, Algarve and Cyclades and two seasons in the Gulf of Cadiz) with chartered commercial fishing vessels. Overall, size selectivity was estimated for 17 out of 28 species for which sufficient data were available. Trammel nets generally caught a wide size range of the most important species, with length frequency distributions that were skewed to the right and/or bi-modal. In many cases the length frequency distributions of the different nets were highly overlapped. The Kolmogorov-Smirnov test also showed that the large outer panel meshes generally had no effect in terms of size selectivity, while the opposite was true for the small inner panel ones. Six different selectivity models (normal scale, normal location, gamma, log-normal, bi-modal and gamma semi-Wileman) were fitted to data for the most abundant species in the four areas. For fish, the bi-modal model provided the best fits for the majority of the data sets, with the uni-modal models giving poor fits in most cases. For Sepia officinalis, where trammelling or pocketing was the method of capture in 100% of the cases, the logistic model fitted by maximum likelihood was judged to be more appropriate for describing the size selective properties of the trammel nets. Our results, which are among the first ones on trammel net selectivity in European waters, will be useful for evaluating the impacts of competing gear for the socio-economically important small-scale static gear fisheries. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Environmental heterogeneity in coastal lagoons is expected to facilitate local adaptation in response to different ecological conditions, causing significant genetic structuring within lagoon populations at a small scale and also differentiation between lagoons. However, these patterns and processes of genetic structuring are still poorly understood. The aims of our study were (1) to seek genetic structure at a small scale in Cerastoderma glaucum inside the Mar Menor coastal lagoon using a mitochondrial DNA marker (COI) that has previously detected genetic differentiation inside the lagoon in other species and (2) to evaluate the influence of extreme environmental conditions and habitat discontinuity on its genetic composition. The results indicate high levels of haplotype diversity and low values of nucleotide diversity. COI data provide evidence of significant population differentiation among some localities within the lagoon. Limited gene flow and unstable population dynamics (i.e. fluctuations in population size caused by local extinction and recolonization), probably due to the high environmental heterogeneity, could generate the small-scale genetic divergence detected between populations within the lagoon.
Resumo:
Trammel net discards in four southern European areas were considerable, with a total of 137 species (79.7% of the total) discarded 65, 105, 46 and 32 species in the Basque country (Spain), Algarve (Portugal), Gulf of Cadiz (Spain) and Cyclades islands (Greece), respectively. The overall discard rate in terms of catch numbers ranged from 15% for the Cyclades to 49% for the Algarve, with the high discard rate for the latter due largely to small pelagic fishes. Discards in the four areas consisted mainly of Trisopterus luscus (Basque country), Scomber japonicus (Algarve), Torpedo torpedo (Cadiz) and Sardina pilchardus (all three areas), and Diplodus annularis in the Cyclades. Strong seasonal variation in discarding was found, reflecting differences in metiers and the versatility of trammel nets as a gear. Discarding, both in terms of numbers of species and individuals decreased with increasing inner panel mesh size. The main reasons for discarding were: (1) species of no or low commercial value (e.g. Scomber japonicus; Torpedo torpedo), (2) commercial species that were damaged or spoiled (e.g. Merluccius merluccius), (3) undersized commercial species (e.g. Lophius piscatorius), and (4) species of commercial value but not caught in sufficient quantities to warrant sale (e.g. Sardina pilchardus). A decrease in soak time together with the appropriate choice of mesh sizes could contribute to a reduction in discarding and to improved sustainability and use of scarce resources in the small-scale, inshore multi-species fisheries of southern Europe. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A landing obligation was formally implemented in the European Union (EU) for the first time, as part of the recent reform of the EU Common Fisheries Policy (CFP). Given the reasonable success of the landing obligation in some countries such as the Faroe Islands, Iceland and Norway, this policy is seen as a viable approach to tackle the long-recognized discarding problem in EU waters. However, there has been some debate on whether there is sufficient evidence to support the feasibility of such a measure in the EU-CFP. The EU landing obligation will implicitly include all small-scale fisheries (SSF) provided the species captured are subject to catch limits or minimum sizes (in the case of the Mediterranean). SSF were included irrespective of the fact that the discarding problem in the EU has been historically associated with medium- to large-scale fleets (in particular largely mixed species trawl fisheries). Additionally, past experiences with a discard ban policy are still limited to specific countries and/or specific fisheries. This paper examined the appropriateness and feasibility of the recently implemented EU landing obligation in SSF. The effects in the long-term are unpredictable, but available evidence suggests that in the short to medium-term a landing obligation is likely to bring more negative social, economic and ecological impacts than benefits. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We quantified the ecosystem effects of small-scale gears operating in southern European waters (Portugal, Spain, Greece), based on a widely accepted ecosystem measure and indicator, the trophic level (TL). We used data from experimental fishing trials during 1997 to 2000. We studied a wide range of gear types and sizes: (1) gill nets of 8 mesh sizes, ranging from 44 to 80 mm; (2) trammel nets of 9 inner panel mesh sizes, ranging from 40 to 140 mm; and (3) longlines of 8 hook sizes, ranging from Nos. 15 (small) to 5 (large). We used the number of species caught per TL class for constructing trophic signatures (i.e. cumulative TL distributions), and estimated the TL at 25, 50 and 75% cumulative frequency (TL25, TL50, TL75) and the slopes using the logistic function. We also estimated the mean weighted TL of the catches (TLW). Our analyses showed that the TL characteristics of longlines varied much more than those of gill and trammel nets. The longlines of large hooks (Nos. 10, 9, 7, 5) were very TL selective, and their trophic signatures had very steep slopes, the highest mean TL50 values, very narrow mean TL25 to TL75 ranges and mean TLW > 4. In addition, the mean number of TL classes exploited was smaller and the mean TL50 and TLW were larger for the longlines of small hooks (Nos. 15, 13, 12, 11) in Greek than in Portuguese waters. Trammel and gill nets caught more TL classes, and the mean slopes of their trophic signatures were significantly smaller than those of longlines as a group. In addition, the mean number of TL classes exploited, the mean TL50 and the TLW of gill nets were significantly smaller than those of trammel nets. We attribute the differences between longlines of small hooks to bait type, and the differences between all gear types to their characteristic species and size-selectivity patterns. Finally, we showed how the slope and the TL50 Of the trophic signatures can be used to characterise different gears along the ecologically 'unsustainable-sustainable' continuum.
Resumo:
Extreme conditions of coastal lagoons could directly modify the genetic patterns of species. The aim of this work was to investigate the influence of environmental conditions and small scale dispersal patterns on the phosphoglucose isomerase (PGI*) genetic variability of Cerastoderma glaucum from the Mar Menor coastal lagoon. For this purpose, 284 cockles were collected around the perimeter of the lagoon. Vertical polyacrylamide gel electrophoresis was used to scan for PGI* polymorphisms, giving a total of seven alleles. The spatial genetic distribution of the PGI* variability, which seems to be marked by the main circulation in the lagoon, discriminates four hydrological basins. In the central basin, a gradient of allelic composition reflects the circulation forced by the dominant winds and the main channel communicated to the open sea. This result is well supported by the salinity GAM model that defines this gradient. The other three basins are defined by the distribution of fine sand in a more complex model that tries to explain the isolation of the three sites localized inside these basins. The southern, western and northern basins show the lowest degree of interconnection and are considered the most confined areas of the Mar Menor lagoon. This situation agrees with the confinement theory for benthic assemblages in the lagoon. The greater degree of differentiation seen in the Isla del Ciervo population is probably due to recent human intervention on the nearby Marchamalo channel, which has been drained in recent years thus altering the influence of the Mediterranean Sea on the southern basin.
Resumo:
Fishing trials with monofilament gill nets and longlines using small hooks were carried out at the same fishing grounds in Cyclades (Aegean Sea) over 1 year. Four sizes of MUSTAD brand, round bent, flatted sea hooks (Quality 2316 DT, numbers 15, 13, 12 and 11) and four mesh sizes of 22, 24, 26 and 28 turn nominal bar length monofilament gill nets were used. Significant differences in the catch size frequency distributions of the two gears were found for four out of five of the most important species caught by both the gears (Diplodus annularis, Diplodus vulgaris, Pagellus erythrinus, Scorpaena porcus and Serranus cabrilla), with longlines catching larger fish and a wider size range than gill nets. Whereas longline catch size frequency distributions for most species for the different hook sizes were generally highly overlapped, suggesting little or no differences in size selectivity, gill net catch size frequency distributions clearly showed size selection, with larger mesh sizes catching larger fish. A variety of models were fitted to the gill net data, with the lognormal providing the best fit in most cases. A maximum likelihood method was also used to estimate the parameters of the logistic model for the longline data. Because of the highly overlapped longline catch size frequency distributions parameters could only be estimated for two species. This study shows that the two static gears have different impacts in terms of size selection. This information will be useful for the more effective management of these small-scale, multi-species and multi-gear fisheries. (C) 2002 Elsevier Science B.V. All rights reserved.