6 resultados para small populations

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The benefits of protection of a small (4.3 km(2)) marine protected area (MPA) for Senegalese sole, Solea senegalensis, were investigated through experimental fishing trials and long-term (up to 293days) passive acoustic telemetry. A total of 106 trammel net sets were carried out between 2007 and 2011. Significant differences in abundance and biomass of sole between bottom types/depths (sandy bottoms between 12 and 20m deep vs muddy bottoms between 35 and 45m deep) were found, but no significant differences were attributable to the implementation of the no-take area. Passive acoustic telemetry revealed that most Senegalese sole spent a large part of their time between first and last detections (average residency index=69%) inside a relatively small area (average 95%=1.2km(2)), during which they preferred sandy bottoms, the most common habitat inside the MPA. Results also demonstrated that Senegalese sole do regular excursions beyond reserve boundaries, eventually emigrating from the MPA. The results suggest that small coastal MPAs providing adequate habitat may protect individuals of this species while allowing for moderate levels of adult spillover to neighbouring areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental heterogeneity in coastal lagoons is expected to facilitate local adaptation in response to different ecological conditions, causing significant genetic structuring within lagoon populations at a small scale and also differentiation between lagoons. However, these patterns and processes of genetic structuring are still poorly understood. The aims of our study were (1) to seek genetic structure at a small scale in Cerastoderma glaucum inside the Mar Menor coastal lagoon using a mitochondrial DNA marker (COI) that has previously detected genetic differentiation inside the lagoon in other species and (2) to evaluate the influence of extreme environmental conditions and habitat discontinuity on its genetic composition. The results indicate high levels of haplotype diversity and low values of nucleotide diversity. COI data provide evidence of significant population differentiation among some localities within the lagoon. Limited gene flow and unstable population dynamics (i.e. fluctuations in population size caused by local extinction and recolonization), probably due to the high environmental heterogeneity, could generate the small-scale genetic divergence detected between populations within the lagoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Etmopterus spinax is a small-sized deep-water lantern shark that occurs in the Eastern Atlantic and the Mediterranean. Differences in depth distribution, densities, size at maturity and fecundity were compared between a population that has suffered high levels of fishing mortality during the last decades (Southern Portugal in the northeast Atlantic) and a population where low fishing pressure below 500 m occurs at present or has occurred in the last decades (Northern Alboran Sea in the western Mediterranean). The density of this species, as derived by experimental bottom trawl survey, off the coast of Southern Portugal, is substantially lower than in the Northern Alboran Sea throughout the entire depth range. The Atlantic population is maturing at smaller sizes than the Mediterranean population and has a lower mean fecundity. Specifically, sizes at maturity for Southern Portugal and the Northern Alboran Sea were, respectively, 25.39 and 28.31 cm TL for males and 30.86 and 34.18 cm TL for females, while mean fecundities for Southern Portugal and the Northern Alboran Sea were, respectively, 9.94 and 11.06 oocytes per mature female. This work demonstrated the possible presence of density-dependent mechanisms in the Southern Portuguese population of E. spinax that has lowered the size at maturity as a possible result of excessive fishing mortality. However, given that this is an aplacentary viviparous shark, where fecundity is dependent on female size, this compensatory mechanism seems to have a limited efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies that combine both the ecological responses of marine species and protection measures with movement patterns and habitat use are of major importance in order to better understand the performance of marine protected areas (MPA) and how species respond to their implementation. However, few studies have assessed MPA performance by relating local individual movement patterns and the observed reserve effects. In this study, we combined acoustic telemetry with abundance estimates to study the early effects of a recently established small coastal MPA on the local populations of white seabream. The results show that even small, recently established coastal MPAs can increase the abundance and biomass of commercial fish species, provided that target species have small home ranges and exhibit high site fidelity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine reserves have been widely implemented as tools for biodiversity conservation and fisheries management, amongst other goals. A large number of empirical studies have focused on their effects on reef fish populations. Yet, few studies have looked at their effectiveness on semelparous species such as cephalopods, in spite of their commercial importance in many coastal regions across the globe. In this study we combine behavioural (biotelemetry) and demographic (experimental fishing) data to understand the effects of the Luiz Saldanha Marine Park (LSMP) on local populations of cuttlefish, Sepia officinalis. We used a beyond-BACI design to analyze the possible effect of the implementation of a no-take area on the abundance and biomass of this species and acoustic telemetry data to assess its site fidelity and movements within the study area. Results indicate that there was no detectable effect of the implementation of the no-take area on the abundance or biomass of cuttlefish. We found evidence that acoustically tagged adult cuttlefish leave the reserve a few days or weeks after tagging. The fact that cuttlefish have low site fidelity inside the reserve and large movements across and beyond the study area explains why there is no increase in the population inside the MPA. These results suggest that small coastal marine reserves such as the LSMP are not effective in providing long term protection to cuttlefish populations and, probably, those of other short-lived, highly mobile cephalopods. (C) 2013 Elsevier B.V. All rights reserved.