3 resultados para response surface model
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
In order to produce packaging films with a broad spectrum of action on microorganisms, the
effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied
separately on different microorganisms. Carvacrol was more effective against the grampositive
bacteria than against the gram-negative bacterium. GSE was not effective against
yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of
chitosan (as a third component with film forming properties) was carried out. Response
surface analysis showed several synergetic effects and three optimal AM combinations
(OAMC) were obtained for each microorganism. The experimental validation confirmed that
the optimal solutions found can successfully predict the response for each microorganism.
The optimization of mixtures of the three components, but this time, using the same
concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum
of activity. The results of the response surface analysis showed several synergistic effects for
all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal
mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents
was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also
at the OAMC. The RSA increased in the following order: chitosan
Resumo:
Tese de doutoramento, Ciências Biotecnológicas (Biotecnologia Alimentar), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.