4 resultados para reproductive potential

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several life history traits of sharks result in juveniles being particularly vulnerable to exploitation. However, population level impacts of harvests on juvenile sharks have not been well quantified. This paper examines a range of harvest strategies, including those targeting juveniles. Reproductive value and yield per recruit are used to compare the harvests, which are represented by Leslie matrix models with a harvest matrix. Two species are used as examples: the short-lived Rhizoprionodon taylori and the long-lived Squalus acanthias. Harvests that maintain a stationary population size cause reproductive values to change in opposing ways, but they remove equal fractions of the population's reproductive potential. A new theorem gives population growth as a function of the fraction of reproductive potential removed by a harvest, a relationship useful for comparing harvests on juveniles and adults. Stochastic projections indicate that the risk of depletion is associated with the fraction of reproductive potential removed annually, a measure which encompasses the information in both the selectivity and the rate of fishing mortality. These results indicate the value of focusing conservation efforts on preserving reproductive potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Especialização em Pescas e Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parastichopus regalis (Cuvier, 1817) is the most expensive seafood product on the Catalonian market (NE Spain), with prices at approximately 130 €/Kg (fresh weight). Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. Here, we provide both the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI) and 16S genes and a morphological description of its population. Individual sea cucumbers were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia). We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed in the COI gene. The population pairwise fixation index (FST), AMOVA and correspondence analysis (CA) based on the COI gene revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g., microsatellites) is necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with a decrease in the size and weight averages and lower genetic diversity compared with locations that lack fishery pressure. For the appropriate management of this species, we suggest the following: 1) accurately assessing the stock status along the Spanish coasts; 2) studying the reproductive cycle of this target species and the establishment of a closed fishery season according to the reproductive cycle; and 3) establishing protected areas (i.e., not take zones) to conserve healthy populations and favour recruitment in the nearby areas.