2 resultados para recovery time
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Sea cucumber stocks have been overfished in many countries. As a consequence, several species (Holothuria polii, Holothuria tubulosa and Holothuria mammata) are now caught in Turkish waters without adequate knowledge on their biology and ecology. Here, we address their morphometry, relationships among gutted length and weight, population dynamics, temporal evolution of catches, and we provide the first insights about technical aspects of their fisheries. The largest size classes of H. polii are missing from our sampling collection, possibly due to the heavy fishery pressure on this species. Significant differences in the eviscerated length and weight were found among the Turkish sampled localities for H. polii and H. tubulosa, respectively. These differences could be explained by higher food availability in some areas and/or differential fishery pressure. The size and weight of H. tubulosa specimens were smaller than those registered for the same species in Greek waters, where this species is not fished. All the studied species showed allometric growth. In the last two years, the sea cucumber fishery in Turkey has been increasing rapidly, reaching a total production of ca. 555 000 kg in 2012 (80% H. polii and 20% H. tubulosa plus H. mammata). For a correct management of these species, we recommend: 1) the reestablishment of species-specific closed fishery season according to the specific reproductive cycle; 2) the assessment of the exploited stocks from the Northern Turkish coasts with estimates of recovery time of their populations; 3) the reduction of fishery efforts, mainly on H. polii and H. tubulosa and 4) the establishment of protected areas (where sea cucumber fisheries are forbidden) to conserve healthy populations which will favour the recruitment on nearby areas.
Resumo:
The use of biological processes with the aim of the recovery of gold from low-concentration solutions derived from leaching of secondary sources is gaining increasing importance owing to the scarcity of the primary resources and the economic and environmental advantages usually presented by these methods. Thus, the addition in batch and continuous processes of different solutions containing biogenic sulphide, which was generated by the activity of sulphate-reducing bacteria (SRB), to gold(III) solutions was investigated for that purpose. In the batch experiments, AuS nanoparticles with sizes of between 6 and 14 nm were obtained (corresponding to 100% removal of Au(III) from solution) if the biogenic sulphide was generated in a typical nutrient medium for SRB, whereas Au(0) nanoparticles with sizes of below 8 nm were obtained (corresponding to 62% removal of Au(III)) if effluent from a SRB bioremediation process for treating acid mine drainage (AMD) was used instead. These results stimulated the development of a continuous process of addition, in which two sulphide-rich effluents, which resulted from a SRB bioremediation process for treating two types of AMD (from a uranium mine and a polysulphide mine), were tested. In both cases, Au(0) nanoparticles with sizes of between 6 and 15 nm were mainly obtained, and the percentage removal of Au(III) from solution ranged from 76% to 100%. The processes described allow the simultaneous treatment of AMD and recovery of metallic gold nanoparticles, which are a product with a wide range of applications (e.g., in medicine, optical devices and catalysis) and high economic value. The synthesis process described in this work can be considered as novel, because it is the first time, to our knowledge, that the use of effluent from a SRB bioremediation process has been reported for the recovery of gold(III) as gold(0) nanoparticles.