4 resultados para plant tubulin
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Dissolved oxygen concentration is one of the most limiting factors in aerobic cultures, due to the poor solubility of oxygen in aqueous media. In many processes, the microorganisms growth and production can be affected as a result of insufficient oxygen supply to the broths [1, 2]. To increase oxygen solubility, some methods can be used, such as the increment of aeration or agitation rates or decrease of the solution temperature.
Resumo:
Grapevine leafroll disease (GLRD) is one of the most important virus diseases of grapevines worldwide, causing major economical impact. The disease has a complex aetiology and currently eleven phloem-limited viruses, termed in general Grapevine leafroll-associated virus (GLRaVs), have been identified. Two of the GLRaVs, GLRaV-1 and GLRaV-3, are included in the European certification scheme of propagation material. However, the flawed notion that GLRaV-3 is more frequent than GLRaV-1 and that all other GLRaVs are possibly not as relevant for GLRD, has until now precluded the development of specific serological and molecular detection assays and limited the scope of molecular characterization of the viruses known to be associated with the disease. Hence, few studies have addressed the phylodynamics of GLRaVs or even characterized the genetic structure of their natural populations. This generalized lack of molecular information, in turn underlie the deficient capacity to detect the viruses. The phylogenetic analyses were conducted on the basis of the heat shock protein 70 homologue (HSP70h) and the coat protein (CP) genes for GLRaV-1 and the HSP70h, the heat shock protein 90 homologue (HSP90h) and the CP genes for GLRaV-5. The data obtained for GLRaV-1 contributed 83 new CP sequences. This information was combined with previous analysis by other authors and used for the production of new polyclonal IgG, capable of detecting CP variants from all the phylogroups observed. Successful testing of this new tool included tissue print immunoblotting (TPIB) and in situ immunoassay (ISIA). The data obtained for GLRaV-5, contributed 61 new CP and 28 new HSP90h gene sequences. Eight phylogenetic groups were identified on the basis of the CP. Characterization of the genetic structure of the isolates revealed a higher diversity than previously reported and allowed the identification of dominant virus variants. For both GLRaV-1 and GLRaV-5, the effect of vegetative propagation on the virus transmission dynamics was addressed.
Resumo:
The present work has the merit of exploring an insight into the activation of defence genes of Quercus suber during response to infection by Phytophthora cinnamomi. Thus, cDNA-AFLP methodology was used to identify gene fragments differentially present in the mRNA profiles of host cells of micropropagated Q. suber plantlets roots infected with zoospores of P. cinnamomi at different post challenge time points. Six candidate genes were selected based on their interesting cDNA-AFLP expression patterns and homology to genes known to play a role in defence. These six genes encode a cinnamyl alcohol dehydrogenase 2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), thaumatin-like protein (QsTLP), chitinase (QsCHI) and a 1,3-beta glucanase (QsGLU). The current work has been successful in evaluation of the expression of these genes by qRT-PCR. Data analysis revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the early hours of inoculation, while transcript profiles of thaumatin-like protein showed decreasing. No expression was detected for 1,3-beta-glucanase (QsGLU). Furthermore, the choice of suitable reference genes in any new experimental system is absolutely crucial in qRT-PCR; for this reason in this study and for the first time a set of potential reference genes were analyzed and validated for qRT-PCR normalization in the patho-system Phytophthora-Q. suber. Four candidate reference genes polimerase II (QsRPII), eukaryotic translation initiation factor 5A(QsEIF-5A), b-tubulin (QsTUB) and a medium subunit family protein of Clathrin adaptor complexes (QsCACs) were evaluated to determine the most stable internal references in Q. suber. Analysis of stability of genes was carried out using Genex software. Results indicated all these four potential reference genes assumed stable expression. Data analysis revealed that QsRPII and QsCACs were the two most stable genes, while genes QsTUB and QsEIF-5A were the third and the fourth most stable gene, respectively. In this study, a plasmid-based quantitative PCR method was developed to measure P. cinnamomi colonization during infection process of Q. suber. Plasmid-based detection of P. cinnamomi showed a gradual accumulation of the pathogen DNA in cork oak root tips up to 24 h post infection. The higher increase in P. cinnamomi/plasmid DNA ratio occurred between 18 and 24 h. One of the primary objectives of this research was to study the effect of cinnamomins (elicitins secreted by P. cinnamomin) on inducing defence mechanism against the pathogen, as recent histological and ultra-structural studies showed that P. cinnamomi was restricted to the outer cortex root fragments pre-treated with capsicien and cryptogein, suggesting that elicitins can stimulate plant defence reactions against P. cinnamomi. To complement these studies and to have a clear view of the nature of the interaction, the role of cinnamomins in the production of the oxidative burst [ROS and ROS scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)] and in the defence responses was evaluated. Cork oak seedlings were pretreated with alpha-cinnamomin and then inoculated with P. cinnamomi mycelia. Results showed a significant higher production of reactive oxygen species (ROS) (H2O2 and O2•-) in elicitin and non-elicitin treated roots in interaction with P. cinnamomi in comparison to the corresponding control. The plant group inoculated with the pathogen after cinnamomin treatment showed an earlier increase in H2O2 production but this was lower as compared with that group inoculated with P. cinnamomi alone. Also, in elicitin pre-treated group generally, a lower level of O2•− production during infection was observed as compared with inoculated roots with P. cinnamomi alone without elicitin treatment. Furthermore, in this study, we evaluated activities of antioxidant enzymes upon challenge with P. cinnamomi, with and without pretreatment with alpha cinnamomin. Results indicated that the activities of defense enzymes POD, SOD and CAT increased after P. cinnamomi inoculation when compared with those in the control group. Also, in the group treated with alpha-cinnamomin followed by P. cinnamomi inoculation, a higher level of enzymatic activities was detected as compared with elicitin non-treated group, which suggest the protective effect of alpha-cinnamomin against the pathogen due to higher elevated levels of defense enzymes POD, SOD and CAT during the infection period. Furthermore, a sensitive qPCR method was applied to measure the pathogen biomass in elicited and non-elicited Q. suber roots challenged with P. cinnamomi to elucidate the effect of cinnamomins on the colonization of P. cinnamomi. Plasmid-based quantification of P. cinnamomi showed a significant decrease in accumulation of the pathogen DNA in cork oak roots after treatment with alpha and beta-cinnamomins which attest the role of cinnamomins in promoting defense responses in cork oak against P. cinnamomi invasion.
Resumo:
Total phenol, hydroxycinnamic acid derivatives, flavone/flavonol and flavanones/dihydroflavonol contents of hydro-alcoholic extracts, obtained by sonication, from the aerial parts of Artemisia campestris L., Anthemis arvensis L., Haloxylon scoparium Pomel, Juniperus phoenicea L., Arbutus unedo L., Cytisus monspessulanus L., Thymus algeriensis Boiss et Reut, Zizyphus lotus L (Desf.) collected in Djebel Amour (Sahara Atlas, Algeria) were quantified by spectrophotometric methods. The chemical composition of the essential oils obtained by hydrodistillation from Artemisia campestris L. and Juniperus phoenicea I aerial parts were also evaluated by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). The antioxidant activity of the extracts and essential oils was assessed measuring the capacity for preventing lipid peroxidation using two lipidic substrates (egg yolk and liposomes), the capacity for scavenging DPPH, ABTS, superoxide anion radicals, hydroxyl radicals and peroxyl radicals. Anti-inflammatory activity was assessed by measuring the capacity for inhibiting lipoxygenase. Reducing power and chelating capacity were also assayed. The results showed different amounts of total phenols depending on the method used: A. campestris extract had the highest levels of total phenols when the measurement was made at lambda = 280 nm, whereas H. scoparium and A. unedo extracts showed the highest levels of total phenols with Folin-Ciocalteau. C. monspessulanus had the highest levels of flavones/flavonols and flavanones/dihydroflavonols. The essential oils of A. campestris and J. phoenicea were mainly constituted by alpha-pinene, beta-pinene and sabinene; and a-pinene, respectively. The methods used for assaying the capacity for preventing lipid peroxidation revealed to be inadequate for extracts due to the great interferences detected. The essential oils were more active than the generality of extracts for scavenging peroxyl radicals and for inhibiting lipoxygenase, whereas A. unedo extract was the most active for scavenging ABTS, DPPH, superoxide anion radicals and it also had the best reducing capacity. In a general way, the great majority of the antioxidant activities correlated well with the phenol content although such correlation was not so clear with the flavonoid content. (c) 2013 Elsevier B.V. All rights reserved.