2 resultados para participatory evaluation methodology
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
We write to comment on the recently published paper “Defining phytoplankton class boundaries in Portuguese transitional waters: an evaluation of the ecological quality status according to the Water Framework Directive” (Brito et al., 2012). This paper presents an integrated methodology to analyse the ecological quality status of several Portuguese transitional waters, using phytoplanktonrelated metrics. One of the systems analysed, the Guadiana estuary in southern Portugal, is considered the most problematic estuary, with its upstream water bodies classified as Poor in terms of ecological status. We strongly disagree with this conclusion and we would like to raise awareness to some methodological constraints that, in our opinion, are the basis of such deceptive conclusions and should therefore not be neglected when using phytoplankton to assess the ecological status of natural waters.
Resumo:
A non-linear least-squares methodology for simultaneously estimating parameters of selectivity curves with a pre-defined functional form, across size classes and mesh sizes, using catch size frequency distributions, was developed based on the model of Kirkwood and Walker [Kirkwood, G.P., Walker, T.L, 1986. Gill net selectivities for gummy shark, Mustelus antarcticus Gunther, taken in south-eastern Australian waters. Aust. J. Mar. Freshw. Res. 37, 689-697] and [Wulff, A., 1986. Mathematical model for selectivity of gill nets. Arch. Fish Wiss. 37, 101-106]. Observed catches of fish of size class I in mesh m are modeled as a function of the estimated numbers of fish of that size class in the population and the corresponding selectivities. A comparison was made with the maximum likelihood methodology of [Kirkwood, G.P., Walker, T.I., 1986. Gill net selectivities for gummy shark, Mustelus antarcticus Gunther, taken in south-eastern Australian waters. Aust. J. Mar. Freshw. Res. 37, 689-697] and [Wulff, A., 1986. Mathematical model for selectivity of gill nets. Arch. Fish Wiss; 37, 101-106], using simulated catch data with known selectivity curve parameters, and two published data sets. The estimated parameters and selectivity curves were generally consistent for both methods, with smaller standard errors for parameters estimated by non-linear least-squares. The proposed methodology is a useful and accessible alternative which can be used to model selectivity in situations where the parameters of a pre-defined model can be assumed to be functions of gear size; facilitating statistical evaluation of different models and of goodness of fit. (C) 1998 Elsevier Science B.V.