1 resultado para nonlinear sigma model
em SAPIENTIA - Universidade do Algarve - Portugal
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (16)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (97)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (93)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (10)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (8)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (108)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (1)
- Publishing Network for Geoscientific & Environmental Data (25)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (71)
- Queensland University of Technology - ePrints Archive (69)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (184)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (39)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Michigan (1)
- University of Queensland eSpace - Australia (2)
- WestminsterResearch - UK (1)
Resumo:
This paper presents a comparison between a physical model and an artificial neural network model (NN) for temperature estimation inside a building room. Despite the obvious advantages of the physical model for structure optimisation purposes, this paper will test the performance of neural models for inside temperature estimation. The great advantage of the NN model is a big reduction of human effort time, because it is not needed to develop the structural geometry and structural thermal capacities and to simulate, which consumes a great human effort and great computation time. The NN model deals with this problem as a “black box” problem. We describe the use of the Radial Basis Function (RBF), the training method and a multi-objective genetic algorithm for optimisation/selection of the RBF neural network inputs and number of neurons.