3 resultados para multiple-use forest management
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Marine protected areas (MPAs) are a global conservation and management tool to enhance the resilience of linked social-ecological systems with the aim of conserving biodiversity and providing ecosystem services for sustainable use. However, MPAs implemented worldwide include a large variety of zoning and management schemes from single to multiple-zoning and from no-take to multiple-use areas. The current IUCN categorisation of MPAs is based on management objectives which many times have a significant mismatch to regulations causing a strong uncertainty when evaluating global MPAs effectiveness. A novel global classification system for MPAs based on regulations of uses as an alternative or complementing, the current IUCN system of categories is presented. Scores for uses weighted by their potential impact on biodiversity were built. Each zone within a MPA was scored and an MPA index integrates the zone scores. This system classifies MPAs as well as each MPA zone individually, is globally applicable and unambiguously discriminates the impacts of uses. (C) 2016 The Authors. Published by Elsevier Ltd.
Resumo:
Dissertação de Mestrado, Economia do Turismo e Desenvolvimento Regional, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
If marine management policies and actions are to achieve long-term sustainable use and management of the marine environment and its resources, they need to be informed by data giving the spatial distribution of seafloor habitats over large areas. Broad-scale seafloor habitat mapping is an approachwhich has the benefit of producing maps covering large extents at a reasonable cost. This approach was first investigated by Roff et al. (2003), who, acknowledging that benthic communities are strongly influenced by the physical characteristics of the seafloor, proposed overlaying mapped physical variables using a geographic information system (GIS) to produce an integrated map of the physical characteristics of the seafloor. In Europe the method was adapted to the marine section of the EUNIS (European Nature Information System) classification of habitat types under the MESH project, andwas applied at an operational level in 2011 under the EUSeaMap project. The present study compiled GIS layers for fundamental physical parameters in the northeast Atlantic, including (i) bathymetry, (ii) substrate type, (iii) light penetration depth and (iv) exposure to near-seafloor currents andwave action. Based on analyses of biological occurrences, significant thresholds were fine-tuned for each of the abiotic layers and later used in multi-criteria raster algebra for the integration of the layers into a seafloor habitat map. The final result was a harmonised broad-scale seafloor habitat map with a 250 m pixel size covering four extensive areas, i.e. Ireland, the Bay of Biscay, the Iberian Peninsula and the Azores. The map provided the first comprehensive perception of habitat spatial distribution for the Iberian Peninsula and the Azores, and fed into the initiative for a pan- European map initiated by the EUSeaMap project for Baltic, North, Celtic and Mediterranean seas.