6 resultados para multilayer perceptrons

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the parallelization of a new learning algorithm for multilayer perceptrons, specifically targeted for nonlinear function approximation purposes, is discussed. Each major step of the algorithm is parallelized, a special emphasis being put in the most computationally intensive task, a least-squares solution of linear systems of equations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proportional, Integral and Derivative (PID) regulators are standard building blocks for industrial automation. The popularity of these regulators comes from their rebust performance in a wide range of operating conditions, and also from their functional simplicity, which makes them suitable for manual tuning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the learning problem for a class of multilayer perceptrons which is practically relevant in control systems applications. By reformulating this problem, a new criterion is developed, which reduces the number of iterations required for the learning phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectro gram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.