2 resultados para mangrove forest
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Mangroves are under threat worldwide by deforestation, overexploitation and climate change. The availability and consumption rates of propagules influence mangrove recruitment and can play a major role in their viability and restoration potential. We assess the potential trophic competition between Goniopsis cruentata and Ucides cordatus, two dominant crab species in the New World, by experimentally comparing herbivory levels between forest stands with varying crab abundance. We hypothesize that herbivory rates (HR) of G. cruentata will be lower in mangroves where it coexists with U. cordatus than in mangroves where U. cordatus is absent. The removal of Rhizophora mangle propagules was very rapid, and HR were overall high and increased through time. However, HR did not differ significantly between mangroves with and without the potential trophic competitor U. cordatus. Our study did not support previous literature indications of food competition between these two crab species, which seem to have developed strategies for competition avoidance.
Resumo:
Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.