4 resultados para lines in the sea
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese de dout. em Biologia, especialidade de Biologia Molecular, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Univ. do Algarve
Resumo:
The migration of the hypophysiotropic GnRH (GnRH-I) neurons during early development is a crucial step in establishing a normally functioning reproductive system in all vertebrates. These neurons derive from progenitor cells in the olfactory placode and subsequently migrate to their final position in the ventral forebrain, where they mediate hypophysiotropic control over Lh. We use zebrafish as a model to investigate the path and the factors that mediate the migration of the GnRH-I neurons during early development. A transgenic line of zebrafish, in which GnRH- I neurons specifically express a reporter gene (GFP) has been developed in our lab. This was achieved by integrating a GnRH-I promoter/GFP reporter transgene into the zebrafish genome. The resulting transgenic line allows us to track the route of the GnRH-I neuronal migration in real time and in vivo. We have used this line to conduct time lapse imaging to ascertain the exact migrational path and the final position in the ventral forebrain of the GnRH-I neurons.
Resumo:
We estimated the detonation depth and net explosive weight for a very shallow underwater explosion using cutoff frequencies and spectral analysis. With detonation depth and a bubble pulse the net explosive weight for a shallow underwater explosion could simply be determined. The ray trace modeling confirms the detonation depth as a source of the hydroacoustic wave propagation in a shallow channel. We found cutoff frequencies of the reflection off the ocean bottom to be 8.5 Hz, 25 Hz, and 43 Hz while the cutoff frequency of the reflection off the free surface to be 45 Hz including 1.01 Hz for the bubble pulse, and also found the cutoff frequency of surface reflection to well fit the ray-trace modeling. We also attempted to corroborate our findings using a 3D bubble shape modeling and boundary element method. Our findings led us to the net explosive weight of the underwater explosion offshore of Baengnyeong-do for the ROKS Cheonan sinking to be approximately 136 kg TNT at a depth of about 8 m within an ocean depth of around 44 m. © 2015 Elsevier B.V.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015