2 resultados para intercalation
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Ordered mesoporous silicas with a channel structure of well-defined geometries and dimensions at nanometer scale are excellent candidates to host intercalation reactions. In recent years, our research group has shown that mesoporous silicas of the M41S class combined with metallocene complexes give rise to excellent supported catalysts for ethylene polymerisation. Due to the support characteristics, the reaction is allowed to occur in the channels and in this way hybrid organic-inorganic materials can be prepared within a large range of nanofiller concentration. These HDPE/MCM-41 nanocomposites exhibit an improved mechanical performance and an easier degradability due to the additional role of MCM-41 as a promoter for PE degradation.
Resumo:
Epithelial tissues are essential during morphogenesis and organogenesis. During development, epithelial tissues undergo several different remodeling processes, from cell intercalation to cell change shape. An epithelial cell has a highly polarized structure, which is important to maintain tissue integrity. The mechanisms that regulate and maintain apicobasal polarity and epithelial integrity are mostly conserved among all species and in different tissues within the same organism. aPKC-PAR complex localizes in the apical domain of polarized cells, and its function is essential for apicobasal polarization and epithelial integrity. In this work we characterized two novel alleles of aPKC: a temperature sensitive allele (aPKCTS), which has a point mutation on a kinase domain, and another allele with a point mutation on a highly conserved amino acid within the PB1 domain of aPKC (aPKCPB1). Analysis of the aPKCTS mutant phenotypes, lead us to propose that during development different epithelial tissues have differential requirements of aPKC activity. More specifically, our work suggests de novo formation of adherens junctions (AJs) is particularly sensitive to sub-optimal levels of apkc activity. Analysis of the aPKCPB1 allele, suggests that aPKC is likely to have an apical structural function mostly independent of its kinase activity. Altogether our work suggests that although loss of aPKC function is associated to similar epithelial phenotypes (e.g., loss of apicobasal polarization and epithelial integrity), the requirements of aPKC activity within these tissues are nevertheless likely to vary.