4 resultados para home-field effect
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Field effect devices have been formed in which the active layer is a thin film of poly(3-methylthiophene) grown electrochemically onto preformed source and drain electrodes. Although a field effect is present after electrochemical undoping, stable device characteristics with a high modulation ratio are obtained only after vacuum annealing at an elevated temperature, and only then if the devices are held in vacuo. The polymer is shown to be p type and the devices operate in accumulation only. The hole mobility in devices thermally annealed under vacuum is around 10 -3 cm 2 V -1 s -1. On exposure to ambient laboratory air, the device conductance increases by several orders of magnitude. This increase may be reversed by subjecting the device to a further high-temperature anneal under vacuum. Subsidiary experiments show that these effects are caused by the reversible doping of the polymer by gaseous oxygen.
Resumo:
Field effect transistors (FETs) based on organic materials were investigated as sensors for detecting 2,4,6-trinitrotoluene (TNT) vapors. Several FET devices were fabricated using two types of semiconducting organic materials, solution processed polymers deposited by spin coating and, oligomers (or small molecules) deposited by vacuum sublimation. When vapors of nitroaromatic compounds bind to thin films of organic materials which form the transistor channel, the conductivity of the thin film increases and changes the transistor electrical characteristic. The use of the amplifying properties of the transistor represents a major advantage over conventional techniques based on simple changes of resistance in polymers frequently used in electronic noses.
Resumo:
Field effect transistors based on several conjugated organic materials were fabricated and assesed in terms of electrical stability. The device characteristics were studied using steady state measurements as well as techniques for addressing trap states. Temperature-dependent measurements show clear evidence for an electrical instability occurring above 200 K that is caused by an electronic trapping process. It is suggested that the trapping sites are created by a change in the organic conjugated chain, a process similar to a phase transition.
Resumo:
Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014