5 resultados para hillslope hydrology

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution. Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of  ∼  1.4  ×  106 m3 day−1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼  3.5 times a year), driving an estimated nitrogen (N) load of  ∼  350 Ton N yr−1 into the system as NO3−. Land-borne SGD could add a further  ∼  61 Ton N yr−1 to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling the hydrology of hydrographic basins has shown itself as a useful tool in environment management. The hydrological models can be used for multiple purposes: estimate runoff from sequences of rainfall, access stream water quality, quantify the diffuse pollution that reaches water masses such as estuaries, rivers and lakes, etc. This study has as final objective to simulate and analyse the flow, sediment transport and water quality as a function of landuse and soil type in the basins of Maranhão and Pracana. The modelling system used is SWAT, Soil Water Assessment Tool. In this first phase of the study the hydrodynamic calibration of the model was performed using measurements of average daily flows in five stations. The model compares well with the measurements; the annual average flows are similar and the majority of the measured flow peaks coincide with the model peaks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação mest., Biologia e Geologia, Universidade do Algarve, 2006

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of investigating the spatial and temporal variability of macroinvertebrate and their relation to hydrology, hydraulic and environmental factors was done along the Sigi River during two sampling periods in the dry (March) and wet (May) periods of 2012. The river was demarcated based on slope ranges and five river zones were identified as mountains streams (MS), upper foothills (UF), lower foothills (LF), rejuvenated foothills (REJ) and mature lower river (MR). Samples of macroinvertebrate were collected from the five river zones and measurements of hydrological (discharge), hydraulics (Depth, velocity and Froude number) and Environmental (pH, Temperature, substrate, conductivity) parameters were done in each zone. In characterizing the macroinvertebrate assemblages along the Sigi River diversity indices (number of taxa, total abundances, Margalef richness index and ShannonWiener index) were calculated and the most representative species for the spatial and temporal variation were identified. Melanoides and Afronurous showed differences in abundance in two samplings periods while Cleopatra, Potamonautes, Ephemerythus, Neoperla, Caenis, Ceratogomphus and Cheumatopsyche showed significant difference among the river zones. Spearman rank correlation and Distance Linear Model (DistLM) used to revealed physical factors governing the macroinvertebrate assemblages distribution. The study demonstrated that the variation of physical factors like discharge, temperature, conductivity and pH have an important role in the spatial distribution of macroinvertebrate assemblages along the river and the life cycle of macroinvertebrate (Afronurus) is important in determining the temporal variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Ecohidrologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015