3 resultados para hexane

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação mest., Engenharia Biológica, Universidade do Algarve, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biotecnológicas (Biotecnologia Vegetal), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a multistage process characterized by three stages: initiation, promotion and progression; and is one of the major killers worldwide. Oxidative stress acts as initiator in tumorigenesis; chronic inflammation promotes cancer; and apoptosis inactivation is an issue in cancer progression. In this study, it was investigated the antioxidant, antiinflammatory and antitumor properties of hexane, ether, chloroform, methanol and water extracts of five species of halophytes: A. macrostachyum, P. coronopus, J. acutus, C. edulis and A. halimus. Antioxidant activity was assessed by DPPH• and ABTS•+ methods, and the total phenolics content (TPC) was evaluated by the Folin-Ciocalteau method. The anti-inflammatory activity of the extracts was determined by the Griess method, and by evaluating the inhibition of NO production in LPS-stimulated RAW- 264.7 macrophages. The cytotoxic activity of the extracts against HepG2 and THP1 cell lines was estimated by the MTT assay, and the results obtained were further compared with the S17 non-tumor cell line. The induction of apoptosis of J. acutus ether extract was assessed by DAPI staining. The highest antioxidant activities was observed in C. edulis methanol and the J. acutus ether extracts against the DPPH• radical; and J. acutus ether and A. halimus ether extracts against the ABTS•+ radical. The methanol extracts of C. edulis and P. coronopus, and the ether extract of J. acutus revealed a high TPC. Generally the antioxidant activity had no correlation with the TPC. The A. halimus chloroform and P. coronopus hexane extracts demonstrated ability to reduce NO production in macrophages (> 50%), revealing their anti-inflammatory capacity. The ether extract of J. acutus showed high cytotoxicity against HepG2 cancer cells, with reduced cellular viability even at the lowest concentrations. This outcome was significantly lower than the obtained with the non-tumor cells (S17). This result was complemented by the induction of apoptosis.