3 resultados para hard-to-reach populations

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Arqueologia, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal lagoons are considered one of the most productive areas of our planet harboring a large variety of habitats. Their transitional character, between terrestrial and marine environments, creates a very particular ecosystem with important variations of its environmental conditions. The organisms that are able to survive on these ecosystems frequently experience strong selective pressures and constrictions to gene flowwith marine populations, which could contribute to genetic divergence among populations inhabiting coastal lagoon and marine environments. Therefore, the main aims of this study are to asses the genetic diversity and population structure of Holothuria arguinensis across geographical ranges, to test the hypothesis of coastal lagoons as hotspots of genetic diversity in the Ria Formosa lagoon, and to determine the role of exporting standing genetic variation from the lagoon to open sea and their implications to recent geographical expansion events. To reach these objectives, we investigate the genetic structure of H. arguinensis using two mitochondrial DNA markers (COI and 16S) at different spatial scales: i) small, inside Ria Formosa coastal lagoon, South Portugal; 2) large, including most of the geographical distribution of this species (South and Western Portuguese coast and Canary islands); these results will allow us to compare the genetic diversity of lagoonal and marine populations of H. arguinensis. On this framework, its recent geographical expansion events, recorded by Rodrigues (2012) and González-Wangüemert and Borrero-Pérez (2012), will be analyzed considering the potential contribution from lagoonal genetic pool. Non-significant genetic structure and high haplotypic diversity were found inside the Ria Formosa coastal lagoon. Both genes were unable to detect significant genetic differentiation among lagoonal and marine localities, suggesting a high rate of gene flow. The results supported our hypotheses that coastal lagoons are not only acting as hotspots of genetic diversity, but also contributing for the genetic variability of the species, working as a source of new haplotypes and enhancing adaptation to the high variable conditions. Different genetic patterns of colonization were found on H. arguinensis, but they must be studied more deeply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. A 2-year experimental seining programme and underwater visual censuses were undertaken to quantify the direct effects of active demersal fishing on the population structure and relative abundance of two sympatric seahorse species of conservation concern: the European long-snouted seahorse, Hippocampus guttulatus Cuvier 1829 and the short-snouted seahorse, Hippocampus hippocampus L. The influence of habitat preference on population-level responses to changes in habitat structure following a reduction in fishing effort was also investigated. 2. It was predicted that the benthic habitat would be more structurally complex after fishing ceased and that seahorse densities would increase in response to reduced fishing mortality. Furthermore, it was predicted that the magnitude of the increase in density would be greater for H. guttulatus than for H. hippocampus, because the former species prefers complex vegetated habitats while the latter species uses sparsely vegetated habitats. 3. As predicted, the amount of habitat cover increased significantly when seining ceased, primarily through increases in the abundance of drifting macroalgae and unattached invertebrates. Despite similarities in life histories, the two seahorse species responded differently in terms of magnitude and direction to reduced fishing effort: the abundance of H. guttulatus increased significantly while H. hippocampus decreased in abundance. 4. Results suggest that active demersal fishing may influence the magnitude and direction of the responses of benthic marine fishes to exploitation through its impacts on habitat structure. An increase in habitat cover appeared to favour higher densities of H. guttulatus when seining effort was reduced. By contrast, repeated seining, which maintained less complex habitats, appeared to favour greater abundances of H. hippocampus. 5. Given differences in habitat preference among benthic marine fishes subject to incidental capture in fisheries, simultaneous attempts to manage populations of sympatric species may require complementary strategies that support the persistence of diverse habitat types. Copyright (c) 2006 John Wiley & Sons, Ltd.